
Indistinguishability Obfuscation from
Well-Founded Assumptions

Aayush Jain* Huijia Lin† Amit Sahai‡

August 18, 2020

Abstract

In this work, we show how to construct indistinguishability obfuscation from
subexponential hardness of four well-founded assumptions. We prove:

Theorem (Informal). Let τ ∈ (0,∞), δ ∈ (0, 1), ε ∈ (0, 1) be arbitrary constants. As-
sume sub-exponential security of the following assumptions, where λ is a security
parameter, and the parameters `, k, n below are large enough polynomials in λ:

• the SXDH assumption on asymmetric bilinear groups of a prime order p =
O(2λ),

• the LWE assumption over Zp with subexponential modulus-to-noise ratio 2k
ε
,

where k is the dimension of the LWE secret,

• the LPN assumption over Zp with polynomially many LPN samples and error
rate 1/`δ, where ` is the dimension of the LPN secret,

• the existence of a Boolean PRG in NC0 with stretch n1+τ ,

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-
size circuits exists.

Further, assuming only polynomial security of the aforementioned assumptions,
there exists collusion resistant public-key functional encryption for all polynomial-
size circuits.

*UCLA, Center for Encrypted Functionalities, and NTT Research. Email: aayushjain@cs.ucla.edu.
†UW. Email: rachel@cs.washington.edu.
‡UCLA, Center for Encrypted Functionalities. Email: sahai@cs.ucla.edu.

J
Sticky Note
https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2020/1024
https://eprint.iacr.org/2020/1010

Contents

1 Introduction 1
1.1 Assumptions in More Detail . 2
1.2 Our Ideas in a Nutshell . 3

2 Preliminaries 4

3 Definition of Structured-Seed PRG 7

4 Construction of Structured Seed PRG 8

5 Bootstrapping to Indistinguishability Obfuscation 20
5.1 Perturbation Resilient Generators . 23

6 Acknowledgements 26

7 References 27

A Partially Hiding Functional Encryption 36

B Recap of constant-depth functional encryption 37

1 Introduction

In this work, we study the notion of indistinguishability obfuscation (iO) for general
polynomial-size circuits [BGI+01a, GKR08, GGH+13b]. iO requires that for any two cir-
cuits C0 and C1 of the same size, such that C0(x) = C1(x) for all inputs x, we have that
iO(C0) is computationally indistinguishable to iO(C1). Furthermore, the obfuscator iO
should be computable in probabilistic polynomial time. The notion of iO has proven
to be very powerful, with over a hundred papers published utilizing iO to enable a re-
markable variety of applications in cryptography and complexity theory; indeed iO has
even expanded the scope of cryptography, (see, e.g. [GGH+13b, SW14, BFM14, GGG+14,
HSW13, KLW15, BPR15, CHN+16, GPS16, HJK+16]).

Despite this success, until this work, all previously known iO constructions [GGH13a,
GGH+13b, BGK+14, BR14, PST14, AGIS14, BMSZ16, CLT13, CLT15, GGH15, CHL+15,
BWZ14, CGH+15, HJ15, BGH+15, Hal15, CLR15, MF15, MSZ16, DGG+16, Lin16, LV16,
AS17, Lin17, LT17, GJK18, AJS18, Agr19, LM18, JLMS19, BIJ+20, AP20, BDGM20] required
new hardness assumptions that were postulated specifically for showing security of the
iO schemes proposed. Indeed, the process of understanding these assumptions has been
tortuous, with several of these assumptions broken by clever cryptanalysis [CHL+15,
BWZ14, CGH+15, HJ15, BGH+15, Hal15, CLR15, MF15, MSZ16, BBKK17, LV17, BHJ+19].
The remaining standing ones are based on new and novel computational problems that
are different in nature from well-studied computational problems (for instance, LWE with
leakage on noises).

As a result, there has been a lack of clarity about the state of iO security [BKM+19].
Our work aims to place iO on terra firma.

Our contribution. We show how to construct iO from subexponential hardness of four
well-founded assumptions. We prove:

Theorem 1.1. (Informal) Let τ be arbitrary constants greater than 0, and δ, ε in (0, 1). Assume
sub-exponential security of the following assumptions, where λ is the security parameter, and the
parameters `, k, n below are large enough polynomials in λ:

• the SXDH assumption on asymmetric bilinear groups of a prime order p = O(2λ),

• the LWE assumption over Zp with subexponential modulus-to-noise ratio 2k
ε , where k is the

dimension of the LWE secret,

• the LPN assumption over Zp with polynomially many LPN samples and error rate 1/`δ,
where ` is the dimension of the LPN secret,

• the existence of a Boolean PRG in NC0 with stretch n1+τ ,

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size cir-
cuits exists.

All four assumptions are based on computational problems with a long history of
study, rooted in complexity, coding, and number theory. Further, they were introduced
for building basic cryptographic primitives (such as public key encryption), and have
been used for realizing a variety of cryptographic goals that have nothing to do with iO.

1

1.1 Assumptions in More Detail

We now describe each of these assumptions in more detail and briefly survey their history.

The SXDH Assumption: The standard SXDH assumption is stated as follows: Given an
appropriate prime p, three groups G1, G2, and GT are chosen of order p such that there
exists an efficiently computable nontrivial bilinear map e : G1 × G2 → GT . Canonical
generators, g1 for G1, and g2 for G1, are also computed. Then, the SXDH assumption
requires that the Decisional Diffie Hellman (DDH) assumption holds in both G1 and G2.
That is, it requires that the following computational indistinguishability holds:

∀b ∈ {1, 2}, {(gxb , g
y
b , g

xy
b) | x, y ← Zp} ≈c {(gxb , g

y
b , g

z
b) | x, y, z ← Zp}

This assumption was first defined in the 2005 work of Ballard et. al. [BGdMM05].
Since then, SXDH has seen extensive use in a wide variety of applications throughout
cryptography, including Identity-Based Encryption and Non-Interactive Zero Knowledge
(See, e.g. [GS08, BKKV10, BJK15, Lin17, CLL+12, JR13]). It has been a subject of extensive
cryptanalytic study (see [Ver01] for early work and [GR04] for a survey).

The LWE Assumption: The LWE assumption with respect to subexponential-size mod-
ulus p, dimension λ, sample complexity n(λ) and polynomial-expectation discrete Gaus-
sian distribution χ over integers states that the following computational indistinguisha-
bility holds:

{A, s ·A + e mod p |A← Zλ×np , s← Z1×λ
p , e← χ1×n}

≈c {A,u |A← Zλ×np , u← Z1×n
p }

This assumption was first stated in the work of [Reg05]. The version stated above is
provably hard as long as GAP-SVP. is hard to approximate to within subexponential fac-
tors in the worst case [Reg05, Pei09, GPV08, MR04, MP13]. LWE has been used extensively
to construct applications such as Leveled Fully Homomorphic Encryption [BV11, BGV12,
GSW13], Key-Homomorphic PRFs [BLMR13], Lockable Obfuscation [GKW17, WZ17],
Homomorphic Secret-Sharing [MW16, DHRW16], Constrained PRFs [BV15b], Attribute
Based Encryption [BGG+14, GVW13, GVW15] and Universal Thresholdizers [BGG+18],
to name a few.

The existence of PRGs in NC0: The assumption of the existence of a Boolean PRG in NC0

states that there exists a Boolean function G : {0, 1}n → {0, 1}m where m = n1+τ for some
constant τ > 0, and where each output bit computed by G depends on a constant number
of input bits, such that the following computational indistinguishability holds:

{G(σ) | σ ← {0, 1}n} ≈c {y | y ← {0, 1}m}

Pseudorandom generators are a fundamental primitive in their own right, and have vast
applications throughout cryptography. PRGs in NC0 are tightly connected to the funda-
mental topic of Constraint Satisfaction Problems (CSPs) in complexity theory, and were

2

first proposed for cryptographic use by Goldreich [Gol00, CM01] 20 years ago. The com-
plexity theory and cryptography communities have jointly developed a rich body of lit-
erature on the cryptanalysis and theory of constant-locality Boolean PRGs [Gol00, CM01,
MST03, ABR12, BQ12, App12, OW14, AL16, KMOW17, CDM+18].

LPN over large fields: Like LWE, the LPN assumption over finite fields Zp is also a decod-
ing problem. The standard LPN assumption with respect to subexponential-size modulus
p, dimension `, sample complexity n(`) and a noise rate r = 1/`δ for δ ∈ (0, 1) states that
the following computational indistinguishability holds:

{A, s ·A + e mod p |A← Z`×np , s← Z1×`
p , e← D1×n

r }
≈c {A,u |A← Z`×np , u← Z1×n

p }.

Above e ← Dr is a generalized Bernoulli distribution, i.e. e is sampled randomly from
Zp with probability 1/`δ and set to be 0 otherwise. Thus, the difference between LWE and
LPN is the structure of the error distribution. In LWE the error vector is a random (poly-
nomially) bounded vector. In LPN, it is a sparse random vector, but where it is nonzero,
the entries have large expectation. The origins of the LPN assumption date all the way
back to the 1950s: the works of Gilbert [Gil52] and Varshamov [Var57] showed that ran-
dom linear codes possessed remarkably strong minimum distance properties. However,
since then, almost no progress has been made in efficiently decoding random linear codes
under random errors. The LPN over fields assumption above formalizes this, and was for-
mally defined for general parameters in 2009 [IPS09], under the name “Assumption 2.”
While in [IPS09], the assumption was used when the error rate is constant, in fact, poly-
nomially low error (in fact δ = 1/2) has an even longer history in the LPN literature: it
was used by Alekhnovitch in 2003 [Ale03] to construct public-key encryption with the
field F2. The exact parameter settings that we describe above, with both general fields
and polynomially low error, was explicitly posed by [BCGI18].

This assumption was posed for the purpose of building efficient secure two-party and
multi-party protocols for arithmetic computations [IPS09, AAB15]. Earlier, LPN over bi-
nary fields was posed for the purpose of constructing identification schemes [HB01] and
public-key encryption [Ale03]. Recently, the assumption has led to a wide variety of ap-
plications (see for example, [IPS09, AAB15, BCGI18, ADI+17, DGN+17, GNN17, BLMZ19,
BCG+19]). A comprehensive review of known attacks on LPN over large fields, for the pa-
rameter settings we are interested in, was given in [BCGI18]. For our parameter setting,
the best running time of known attacks is sub-exponential, for any choice of the constant
δ ∈ (0, 1) and for any polynomial n(`)

1.2 Our Ideas in a Nutshell

Previous work [AJS18, LM18, AJL+19, JLMS19, JLS19, GJLS20] showed that to achieve
iO, it is sufficient to assume LWE, SXDH, and PRG in NC0, and one other object, that
we will encapsulate as a structured-seed PRG (sPRG) with polynomial stretch and special
efficiency properties. In an sPRG, the seed to the sPRG consists of both a public and private
part. The pseudorandomness property of the sPRG should hold even when the adversary

3

can see the public seed in addition to the output of the sPRG. Crucially, the output of
the sPRG should be computable by a degree-2 computation in the private seed (where,
say, the coefficients of this degree-2 computation are obtained through constant-degree
computations on the public seed).

Our key innovation is a simple way to leverage LPN over fields to build an sPRG.
The starting point for our construction is the following observation. Assuming LPN and
that G is an (ordinary) PRG in NC0 with stretch m(n), we immediately have the following
computational indistinguishability:{

(A, b = s ·A+ e+ σ, G(σ)) |A← Z`×np ; s← Z1×`
p ; e← D1×n

r (p); σ ← {0, 1}1×n
}

≈c
{

(A, u, w) |A← Z`×np ; u← Z1×n
p ; w ← {0, 1}1×m(n)

}
Roughly speaking, we can think of both A and b above as being public. All that

remains is to show that the computation of G(σ) can be performed using a degree-2 com-
putation in a short-enough specially-prepared secret seed. Because G is an arbitrary PRG
in NC0, it will not in general be computable by a degree-2 polynomial in σ. To accomplish
this goal, we crucially leverage the sparseness of the LPN error e, by means of a simple
pre-computation idea to “correct” for errors introduced due to this sparse error. A gentle
overview is provided in Section 4, followed by our detailed construction and analysis.

2 Preliminaries

For any distribution X , we denote by x ← X the process of sampling a value x from the
distribution X . Similarly, for a set X we denote by x← X the process of sampling x from
the uniform distribution over X . For an integer n ∈ N we denote by [n] the set {1, .., n}.
A function negl : N → R is negligible if for every constant c > 0 there exists an integer
Nc such that negl(λ) < λ−c for all λ > Nc. Throughout, when we refer to polynomials in
security parameter, we mean constant degree polynomials that take positive value on non
negative inputs. We denote by poly(λ) an arbitrary polynomial in λ satisfying the above
requirements of non-negativity. We denote vectors by bold-faced letters such as b and
u. Matrices will be denoted by capitalized bold-faced letters for such as A and M . For
any k ∈ N, we denote by the tensor product v⊗k = v ⊗ · · · ⊗ v︸ ︷︷ ︸

k

to be the standard tensor

product, but converted back into a vector. We also introduce two new notations. First, for
any vector v we refer by dim(v) the dimension of vector v. For any matrix M ∈ Zn1×n2

q ,
we denote by |M| the bit length of M. In this case, |M| = n1 · n2 · log2 q. We also overload
this operator in that, for any set S, we use |S| to denote the cardinality of S. The meaning
should be inferred from context.

For any two polynomials a(λ, n), b(λ, n) : N× N→ R≥0, we say that a is polynomially
smaller than b, denoted as a� b, if there exists an ε ∈ (0, 1) and a constant c > 0 such that
a < b1−ε · λc for all large enough n, λ ∈ N. The intuition behind this definition is to think
of n as being a sufficiently large polynomial in λ

4

Multilinear Representation of Polynomials and Representation over Zp. In this work
we will consider multivariate polynomials p ∈ Z[x = (x1, . . . , xn)] mapping {0, 1}n to
{0, 1}. For any such polynomial there is a unique multilinear polynomial p′ (obtained by
setting x2i = xi) such that p′ ∈ Z[x] and p′(x) = p(x) for all x ∈ {0, 1}n. Further, such
a polynomial can have a maximum degree of n. At times, we will consider polynomials
g ∈ Zp[x] such that for every x ∈ {0, 1}n, g(x) mod p = p(x). Such a polynomial g
can be constructed simply as follows. Let p′(x) =

∑
S⊆[n] cS Πi∈Sxi. We can construct

g(x) =
∑

S⊆[n](cS mod p)Πi∈Sxi. Note that g has degree at most the degree of p′ over Z.
For polynomials of degree d, both the process described above can take O(nd) time. In
this work, we consider polynomials representing pseudorandom generators in NC0. Such
polynomials depend only on a constant number of input bits, and thus their multilinear
representations (and their field representations) are also constant degree polynomials. In
this scenario, these conversions take polynomial time.

Definition 2.1 ((T, ε)-indistinguishability). We say that two ensembles X = {Xλ}λ∈N and
Y = {Yλ}λ∈N are (T, ε)-indistinguishable where T : N → N and ε : N → [0, 1] if for every
non-negative polynomial poly(·, ·) and any adversary A running in time bounded by T poly(λ) it
holds that: For every sufficiently large λ ∈ N,∣∣∣∣ Pr

x←Xλ
[A(1λ, x) = 1]− Pr

y←Yλ
[A(1λ, y) = 1]

∣∣∣∣ ≤ ε(λ).

We say that two ensembles are ε-indistinguishable if it is (λ, ε)-indistinguishable, and is subex-
ponentially ε-indistinguishable if it is (T, ε)-indistinguishable for T (λ) = 2λ

c for some positive
constant c. It is indistinguishable if it is 1

λc
-pseudorandom for every positive constant c, and

subexponentially indistinguishable if (T, 1/T)-indistinguishable for T (λ) = 2λ
c for some positive

constant c.

Below if the security a primitive or the hardness of an assumption are defined through
indistinguishability, we say the primitive or assumption is (T, ε) secure, hard, or indis-
tinguishable, or (subexponentially) secure, hard, or indistinguishable if the appropriate
(T, ε)-indistinguishability or (subexponentially) indistinguishability holds.

Indistinguishability Obfuscation. We now define our object of interest, Indistinguisha-
bility Obfuscation (iO). The notion of indistinguishability obfuscation (iO), first con-
ceived by Barak et al. [BGI+01b], guarantees that the obfuscation of two circuits are com-
putationally indistinguishable as long as they both are equivalent circuits, i.e., the output
of both the circuits are the same on every input. Formally,

Definition 2.2 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algorithm
iO is called a (T, γ)-secure indistinguishability obfuscator for polynomial-sized circuits if the fol-
lowing holds:

• Completeness: For every λ ∈ N, every circuit C with input length n, every input x ∈
{0, 1}n, we have that

Pr
[
C ′(x) = C(x) : C ′ ← iO(1λ, C)

]
= 1 .

5

• (T, γ)-Indistinguishability: For every two ensembles {C0,λ} {C1,λ} of polynomial-sized
circuits that have the same size, input length, and output length, and are functionally equiv-
alent, that is, ∀λ, C0,λ(x) = C1,λ(x) for every input x, the following distributions are (T, γ)-
indistinguishable.

{iO(1λ, C0,λ)} {iO(1λ, C1,λ)}

LPN over Fields Assumption. In this work, we use the LPN assumption over a large
field. This assumption has been used in a various works (see for example, [IPS09, AAB15,
BCGI18, ADI+17, DGN+17, GNN17, BLMZ19, BCG+19]). We adopt the following defini-
tion from [BCGI18].

We set up some notation for the definition below. Let p be any prime modulus. We
define the distribution Dr(p) as the distribution that outputs 0 with probability 1− r and
a random element from Zp with the remaining probability.

Definition 2.3 (LPN(`, n, r, p)-Assumption, [IPS09, AAB15, BCGI18]). Let λ be the security
parameter. For an efficiently computable prime modulus p(λ), dimension `(λ), sample complex-
ity n(`), and noise rate r(n) we say that the LPN(`, n, r, p) assumption is (T, γ)-secure / hard /
indistinguishable if the following two distributions are (T, γ)-indistinguishable:{

(A, b = s ·A+ e) |A← Z`×np , s← Z1×`
p , e← D1×n

r (p)
}

{
(A,u) |A← Z`×np , u← Z1×n

p

}
We will set ` to be a large enough polynomial in λ, set r = `−δ, for a constant δ ∈ (0, 1),

and set the number of samples n = `c for some constant c > 1. Note that this setting
of parameters was considered in detail in the work of [BCGI18]. We refer the reader
to [BCGI18] for a comprehensive discussion of the history and security of this assumption.

Leakage Lemma. We will use the following theorem in our security proofs.

Theorem 2.1 (Imported Theorem [CCL18]). Let n, ` ∈ N, ε > 0, and Cleak be a family of
distinguisher circuits from {0, 1}n × {0, 1}` → {0, 1} of size s(n). Then, for every distribution
(X,W) over {0, 1}n × {0, 1}`, there exists a simulator h such that:

1. h is computable by circuits of size bounded by s′ = O(s2`ε−2), and maps {0, 1}n×{0, 1}s′ →
{0, 1}`. We denote by U the uniform distribution over {0, 1}s′ .

2. (X,W) and (X, h(X,U)) are ε-indistinguishable by Cleak. That is, for every C ∈ Cleak,∣∣∣∣ Pr
(x,w)←(X,W)

[C(x,w) = 1]− Pr
x←X,u←U

[C(x, h(x, u)) = 1]

∣∣∣∣ ≤ ε

6

3 Definition of Structured-Seed PRG

Definition 3.1 (Syntax of Structured-Seed Pseudo-Random Generators (sPRG)). Let τ be a
positive constant. A structured-seed Boolean PRG, sPRG, with stretch τ that maps (n · poly(λ))-
bit binary strings into (m = nτ)-bit strings, where poly is a fixed polynomial, is defined by the
following PPT algorithms:

• IdSamp(1λ, 1n) samples a function index I .

• SdSamp(I) jointly samples two binary strings, a public seed and a private seed, sd = (P, S).
The combined length of these strings is n · poly(λ).

• Eval(I, sd) computes a string in {0, 1}m.

Remark 3.1 (Polynomial Stretch.). We denote an sPRG to have polynomial stretch if τ > 1
for some constant τ .

Remark 3.2 (On poly(λ) multiplicative factor in the seed length.). As opposed to a stan-
dard Boolean PRG definition where the length of the output is set to be nτ where n is
the seed length, we allow the length of the seed to increase multiplicatively by a fixed
polynomial poly in a parameter λ. Looking ahead, one should view n as an arbitrary large
polynomial in λ, and hence sPRG will be expanding in length.

Definition 3.2 (Security of sPRG). A structured-seed Boolean PRG, sPRG, satisfies

(T (λ), γ(λ))-pseudorandomness: the following distributions are (T, γ) indistinguishable.

{I, P, Eval(I, P) | I ← IdSamp(1λ, 1n), sd← SdSamp(I)}
{I, P, r | I ← IdSamp(1λ, 1n), sd← SdSamp(I), r ← {0, 1}m(n)}

Definition 3.3 (Complexity and degree of sPRG). Let d ∈ N, let λ ∈ N and n = n(λ) be
arbitrary positive polynomial in λ, and p = p(λ) denote a prime modulus which is an efficiently
computable function in λ. Let C be a complexity class. A sPRG has complexity C in the public seed
and degree d in private seed over Zp, denoted as, sPRG ∈ (C, deg d), if for every I in the support
of IdSamp(1λ, 1n), there exists an algorithm ProcessI in C and an m(n)-tuple of polynomials QI

that can be efficiently generated from I , such that for all sd in the support of SdSamp(I), it holds
that:

Eval(I, sd) = QI(P , S) over Zp , P = ProcessI(P) ,

where QI has degree 1 in P and degree d in S.

We remark that the above definition generalizes the standard notion of families of
PRGs in two aspects: 1) the seed consists of a public part and a private part, and 2) the
seed may not be uniform. Therefore, we obtain the standard notion as a special case.

7

Definition 3.4 (Pseudo-Random Generators, degree, and locality). A (uniform-seed) Boolean
PRG (PRG) is an sPRG with a seed sampling algorithm SdSamp(I) that outputs a public seed P
that is an empty string and a uniformly random private seed S ← {0, 1}n, where the polynomial
poly is fixed to be 1.

Let d, c ∈ N. The PRG has multilinear degree d if for every I in the support of IdSamp(1n),
we have that Eval(I, sd) can be written as an m(n)-tuple of degree-d polynomials over Z in S. It
has constant locality c if for every n ∈ N and I in the support of IdSamp(1n), every output bit of
Eval(I, sd) depends on at most c bits of S.

4 Construction of Structured Seed PRG

In this section, we construct a family of structured-seed PRGs whose evaluation has de-
gree 2 in the private seed, and constant degree in the public seed; the latter ensures that
the computation on the public seed lies in arith-NC0 (which is exactly the class of functions
computed by constant-degree polynomials).

Theorem 4.1. Let λ be the security parameter. Let d ∈ N, δ > 0, τ > 1 be arbitrary constants
and n = poly(λ) be an arbitrary positive non-constant polynomial.

Then, assuming the following:

• the existence of a constant locality Boolean PRG with stretch τ > 1 and multilinear degree
d over Z, and,

• LPN(`, n, r, p)-assumption holds with respect to dimension ` = n1/d d
2
e, error rate r = `−δ,

there exists an sPRG with polynomial stretch in (arith-NC0, deg 2) that is γ-pseudorandom for
every constant γ > 0. Additionally, if both assumptions are secure against 2λ

ν time adversaries
for some constant ν > 0, then, sPRG is subexponentially γ-pseudorandom for every constant
γ > 0.

Technical Overview. Let PRG = (IdSamp,Eval) be the Boolean PRG with multilinear
degree d and stretch τ . Our sPRG will simply evaluate PRG on an input σ ∈ {0, 1}n and
return its output y ∈ {0, 1}m where m = nτ . The challenge stems from the fact that the
evaluation algorithm EvalI(σ) of PRG has degree d in its private seed σ, but the evaluation
algorithm Eval′I(P, S) of sPRG can only have degree 2 in the private seed S. To resolve this,
we pre-process σ into appropriate public and private seeds (P, S) and leverage the LPN
assumption over Zp to show that the seed is hidden.

Towards this, sPRG “encrypts” the seed σ using LPN samples over Zp as follows:

Sample: A← Z`×np , s← Z1×`
p , e← D1×n

r (p)

Add to the function index I ′: A
Add to public seed P : b = sA+ e+ σ

It follows directly from the LPN over Zp assumption that (A, b) is pseudorandom and
hides σ. Furthermore, due to the sparsity of LPN noises, the vector σ + e differs from σ

8

only at a r = `−δ fraction of components – thus it is a sparsely erroneous version of the
seed.

Given such “encryption”, by applying previous techniques [AJL+19, JLMS19, JLS19,
GJLS20] that work essentially by “replacing monomials” – previous works replace mono-
mials in the PRG seed with polynomials in the LWE secret, and we here replace the mono-
mials in the erroneous seed with polynomials in the LPN secret – we can compute PRG
on the erroneous seed σ + e via a polynomial G(1) (that depends on A) that has degree d
on the public component b and only degree 2 on all possible degree dd

2
e monomials in s.

More precisely,

y′ = EvalI
(
σ + e

)
= G1

(
b , (s⊗d

d
2
e)
)
, s = s||1 (1)

where v⊗k denotes tensoring the vector v with itself k times, yielding a vector of di-
mension dim(v)k. In particular, observe that by setting the dimension ` of secret s to be
sufficiently small, the polynomial G(1) can be expanding; this is done by setting param-
eters `(n) so that

(
`d

d
2
e + n

)
� m(n). The reasoning behind comparing the the number

of output bits m = nτ with the number of field elements in the seed of sPRG is that if
m � dim((b, s⊗d

d
2
e)), then, we have polynomial expansion because the the length of the

modulus p is at most λ bits which is asymptotically smaller than the parameter n.
However, the new problem is that even though the degree fits, G(1) only evaluates

an erroneous output y′ = EvalI(σ + e), but we want to obtain the correct output y =
EvalI(σ). To correct errors, we further modify the polynomial and include more pre-
processed information in the private seeds. Our key observation is the following: Because
LPN noises are sparse, and because EvalI has only constant locality, only a few outputs
depend on erroneous seed locations. We refer to them as bad outputs and let BAD denote
the set of their indices. By a simple Markov argument, the number of bad outputs is
bounded by T = mr log n = m logn

`δ
with probability 1 − o(1). Leveraging this sparsity,

sPRG corrects bad outputs using the method described below. In the low probability event
where there are too many bad outputs (greater than T), it simply outputs 0.

We describe a sequence of ideas that lead to the final correction method, starting with
two wrong ideas that illustrate the difficulties we will overcome.

• The first wrong idea is correcting by adding the difference Corr = y − y′ between
the correct and erroneous outputs, y = EvalI(σ) and y′ = EvalI(σ + e); refer to
Corr as the correction vector. To obtain the correct output, evaluation can compute
the following polynomial G(1)

(
b , (s⊗d

d
2
e)
)

+ Corr. The problem is that Corr must be
included in the seed, but it is as long as the output and would kill expansion.

• To fix expansion, the second wrong idea is adding correction only for bad outputs,
so that the seed only stores non-zero entries in Corr, which is short (bounded by T
elements). More precisely, the j’th output can be computed as G(1)

j

(
b , (s⊗d

d
2
e)
)

+
Corrj if output j is bad and without adding Corrj otherwise. This fixes expansion,
but now the evaluation polynomial depends on the location of bad outputs, which
in turn leaks information of the location of LPN noises, and jeopardizes security.

9

The two wrong ideas illustrate the tension between the expansion and security of
sPRG. Our construction takes care of both, by compressing the correction vector Corr to
be polynomially shorter than the output and stored in the seed, and expanding it back
during evaluation in a way that is oblivious of the location of bad output bits. This is pos-
sible thanks to the sparsity of the correction vector and the allowed degree 2 computation
on the private seed. Let’s first illustrate our ideas in two simple cases.

Simple Case 1: Much fewer than
√
m bad outputs. Suppose hypothetically that the num-

ber of bad outputs is bounded by z which is much smaller than
√
m. Thus, if we

convert Corr into a
√
m ×

√
m matrix1, it has low rank z. We can then factorize Corr

into two matrixes U and V of dimensions
√
m × z and z ×

√
m respectively, such

that Corr = UV, and compute the correct output as follows:

∀j ∈ [m], G
(2)
j

(
b , (s⊗d

d
2
e, U,V)

)
= G

(1)
j

(
b , (s⊗d

d
2
e)
)

+ (UV)kj ,lj ,

where (kj, lj) is the corresponding index of the output bit j, in the
√
m×
√
m matrix.

When z �
√
m, the matrices U,V have 2z

√
m field elements, which is polynomially

smaller than m = nτ . As such, G(2) is expanding.

Moreover, observe that G(2) has only degree 2 in the private seed and is completely
oblivious of where the bad outputs are.

Simple Case 2: Evenly spread bad outputs. The above method however cannot handle
more than

√
m bad outputs, whereas the actual number of bad outputs can be up

to T = m(log n)/`δ, which can be much larger than
√
m since δ is an arbitrar-

ily small constant. Consider another hypothetical case where the bad outputs are
evenly spread in the following sense: If we divide the matrix Corr into m

`δ
blocks,

each of dimension `δ/2 × `δ/2, there are at most log n bad outputs in each block. In
this case, we can “compress” each block of Corr separately using the idea from case
1. More specifically, for every block i ∈ [m

`δ
], we factor it into UiVi, with dimensions

`δ/2 × log n and log n× `δ/2 respectively, and correct bad outputs as follows:

∀j ∈ [m], G
(2)
j

(
b ,
(
s⊗d

d
2
e, (Ui,Vi)i∈[m

`δ
]

))
= G

(1)
j

(
b , (s⊗d

d
2
e)
)

+ (UijVij)kj ,lj ,

where ij is the block that output j belongs to, and (kj, lj) ∈ [`δ/2] × [`δ/2] is its index
within this block. We observe that G(2) is expanding, since each matrix Ui or Vi has
`δ/2 log n field elements, and the total number of elements is `δ/2 log n · m

`δ
which is

polynomially smaller than m as long as δ is positive. Moreover, G(2) is oblivious of
the location of bad outputs just as in case 1.

At this point, it is tempting to wish that bad outputs must be evenly spread given that
the LPN noises occur at random locations. This is, however, not true because the input-
output dependency graph of PRG is arbitrary, and the location of bad outputs are corre-
lated. Consider the example that every output bit of PRG depends on the first seed bit.
With probability 1

`δ
it is erroneous and so are all outputs.

1Any injective mapping from a vector to a matrix that is efficient to compute and invert will do.

10

To overcome this, our final idea is to “force” the even spreading of the bad outputs,
by assigning them randomly into B buckets, and then compress the correction vector
corresponding to each bucket.

Step 1: Randomly assign outputs. We assign the outputs into B buckets, via a random
mapping φbkt : [m] → [B]. The number of buckets is set to B = mt

`δ
where t is a

slack parameter set to λ. By a Chernoff-style argument, we can show that each bucket
contains at most t2`δ output bits, and at most t of them are bad, except with negligible
probability in t, which is also negligible in λ. As such, bad outputs are evenly spread
among a small number of not-so-large buckets.

Step 2: Compress the buckets. Next, we organize each bucket i into a matrix Mi of di-
mension t`δ/2 × t`δ/2 and then compute its factorization Mi = UiVi with respect to
matrices of dimensions t`δ/2 × t and t × t`δ/2 respectively. To form matrix Mi, we
use another mapping φind : [m] → [t`δ/2] × [t`δ/2] to assign each output bit j to an
index (kj, lj) in the matrix of the bucket ij it is assigned to. This assignment must
guarantee that no two output bits in the same bucket (assigned according to φbkt)
have the same index; other than that, it can be arbitrary. (Mi)k,l is set to Corrj if there
is j such that φbkt(j) = i and φind(j) = (k, l), and set to 0 if no such j exists. Since
every matrix Mi has at most t non-zero entries, we can factor them and compute the
correct output as:

∀j ∈ [m], G
(2)
j

(
b ,
(
s⊗d

d
2
e, (Ui,Vi)i∈[B]

)
︸ ︷︷ ︸

S

)
= G

(1)
j

(
b , (s⊗d

d
2
e)
)

+ (Uφbkt(j) ·Vφbkt(j))φind(j) ,

G(2) is expanding, because the number of field elements in Ui’s and Vi’s are much
smaller than m, namely: 2t2`δ/2B = O(mλ

3

`δ/2
) � m. Note that it is important that the

assignments φbkt and φind are not included in the seed as their description is as long
as the output. Fortunately, they are reusable and can be included in the function
index I ′ = (I,A, φbkt, φind).

Step 3: Zeroize if uneven buckets. Finally, to deal with the low probability event that
some bucket is assigned more than t2`δ outputs or contains more than t bad outputs,
we introduce a new variable called flag. If either of the conditions above occur, our
sPRG sets flag = 0 and outputs zero. We then include flag in the public seed and
augment the evaluation polynomial as follow:

∀j ∈ [m], G
(3)
j

(
(b, flag)︸ ︷︷ ︸

P

, S
)

= flag ·G(2)
j (b, S) .

This is our final evaluation polynomial. It has constant degree d + 1 in the public
seed P , degree 2 in the private seed S, and expansion similar to that of G(2). For
security, observe that the polynomial G(3) is independent of the location of LPN
noises, while the public seed leaks 1-bit of information through flag, which can be
simulated efficiently via leakage simulation. Therefore, by the LPN over Zp assump-
tion, the seed σ of PRG is hidden and the security of PRG ensures that the output is
pseudorandom when it is not zeroized. We now proceed to the formal construction
and proof.

11

Construction. We now formally describe our scheme. Assume the premise of the the-
orem. Let (IdSamp,Eval) be the function index sampling algorithm and evaluation algo-
rithm for the PRG. Recall that its seed consists of only a private seed sampled uniformly
and randomly.

We first introduce and recall some notation. The construction is parameterized by

• λ is the security parameter,

• n input length to the PRG. n is arbitrary polynomial in λ,

• the stretch τ and degree d of PRG. Set m = nτ ,

• the LPN secret dimension ` = n1/dd/2e, modulus p be a λ bit prime modulus,

• a threshold T = m·logn
`δ

of the number of bad outputs that can be tolerated,

• a slack parameter t used for bounding the capacity of and number of bad outputs in
each bucket, set to t = λ.

• a parameter B = m·t
`δ

that indicates the number of buckets used.

• a parameter c = t2`δ that indicates the capacity of each bucket.

I ′ ← IdSamp′(1λ, 1n
′
): (Note that the PRG seed length n below is an efficiently computable

polynomial in n′, and can be inferred from the next seed sampling algorithm. See
Claim 4.1 for the exact relationship between n and n′.)
Sample I ← IdSamp(1λ, 1n) and A ← Z`×np . Prepare two functions φ = (φbkt, φind) as
follows:

• Sample a random function φbkt : [m] → [B] mapping every output location to
one of B buckets. Let φ−1bkt(i) for i ∈ [B] denote the set of preimages of i through
φbkt. This set contains all outputs assigned to the bucket i.

• Prepare φind : [m]→ [
√
c]× [

√
c] in two cases:

– If some bucket exceeds capacity, that is, there exists i ∈ [B] such that |φ−1bkt(i)| >
c, set φind to be a constant function always outputting (1, 1).

– Otherwise if all buckets are under capacity, for every index j ∈ [m], φind maps
j to a pair of indexes (kj, lj) ∈ [

√
c] × [

√
c], under the constraint that two

distinct output bits j1 6= j2 that are mapped into the same bucket φbkt(j1) =
φbkt(j2) must have distinct pairs of indices φind(j1) 6= φind(j2).

Output I ′ = (I,φ,A).

sd← SdSamp′(I ′): Generate the seed as follows:

• Sample a PRG seed σ ← {0, 1}n.

• Prepare samples of LPN over Zp: Sample s← Z1×`
p , e← D1×n

r (p), and set

b = sA+ σ + e .

12

• Find indices i ∈ [n] of seed bits where σ + e and σ differ, which are exactly
these indices where e is not 0, and define:

ERR = {i | σi + ei 6= σi} = {i | ei 6= 0} .

We say a seed index i is erroneous if i ∈ ERR. Since LPN noise is sparse, errors
are sparse.

• Find indices j ∈ [m] of outputs that depend on one or more erroneous seed
indices. Let Varsj denote the indices of seed bits that the j’th output of EvalI
depends on. Define:

BAD = {j | |Varsj ∩ ERR| ≥ 1} .

We say an output index j is bad if j ∈ BAD, and good otherwise.

• Set flag = 0 if

1. Too many bad output bits: |BAD| > T ,
2. or Some bucket exceeds capacity: ∃i ∈ [B], |φ−1bkt(i)| > c,
3. or Some bucket contains too many bad outputs: ∃i ∈ [B], |φ−1bkt(i) ∩ BAD| > t.

Otherwise, set flag = 1.

• Compute the outputs of PRG on input the correct seed and the erroneous seed,
y = EvalI(σ) and y′ = EvalI(σ + e). Set the correction vector Corr = y − y′.

• Construct matrices M1, . . . ,MB, by setting

∀j ∈ [m],
(
Mφbkt(j)

)
φind(j)

= Corrj

Every other entry is set to 0.

• “Compress” matrices M1, . . . ,MB as follows:

– If flag = 1, for every i ∈ [B] compute factorization

Mi = UiVi, Ui ∈ Z
√
c×t

p , Vi ∈ Zt×
√
c

p

This factorization exists because when flag = 1, condition 3 above implies
that each Mi has at most t nonzero entries, and hence rank at most t.

– If flag = 0, for every i ∈ [B], set Ui and Vi to be 0 matrices.

• Set the public seed to

P = (b, flag) .

• Prepare the private seed S as follows. Let s = s||1.

S =
(
s⊗d

d
2
e, {Ui,Vi}i∈[B]

)
(2)

Output sd = (P, S) as Zp elements.

13

y → Eval′(I ′, sd): Compute y ← Eval(I,σ), and output z = flag · y. This computation is
done via a polynomial G(3)

I′ described below that has constant degree d + 1 in the
public seed and only degree 2 in the private seed, that is,

Eval′(I ′, sd) = flag · y = flag · EvalI(σ) = G
(3)
I′ (P, S) .

We next define G(3)
I′ using intermediate polynomials G(1)

I′ and G
(2)
I′ . For simplicity of

notation, we suppress subscript I ′ below.

• Every output bit of Eval is a linear combination of degree dmonomials (without
loss of generality, assume that all monomials have exactly degree d which can
be done by including 1 in the seed σ).

Notation Let us introduce some notation for monomials. A monomial h on a
vector a is represented by the set of indices h = {i1, i2, . . . , ik} of variables used
in it. h evaluated on a is

∏
i∈h ai if h 6= ∅ and 1 otherwise. We will use the

notation ah =
∏

i∈h ai. We abuse notation to also use a polynomial g to denote
the set of monomials involved in its computation; hence h ∈ g says monomial
h has a nonzero coefficient in g.

With the above notation, we can write Eval as

∀j ∈ [m], yj = Evalj(σ) = Lj((σh)h∈Evalj) , for a linear Lj .

• (A, b = sA + x) in the public seed encodes x = σ + e. Therefore, we can
compute every monomial xv as follows:

xi = 〈ci, s〉 ci = −aT
i ||bi, ai is the ith column ofA

xv = 〈⊗i∈vci, ⊗i∈vs〉

(Recall that ⊗i∈vzi = zi1 ⊗ · · · ⊗ zik if v = {i1, . . . , ik} and is not empty; other-
wise, it equals 1.) Combining with the previous step, we obtain a polynomial
G(1)(b, S) that computes Eval(σ + e):

G
(1)
j (b, S) := Lj

(
(〈⊗i∈vci, ⊗i∈vs〉)v∈Evalj

)
. (3)

Note that G(1), by which we mean G
(1)
I′ , implicitly depends on A contained in

I ′. Since all relevant monomials v have degree d, we have that G(1) has degree
at most d in P , and degree 2 in S. The latter follows from the fact that S contains
s⊗d

d
2
e (see Equation (1)), and hence S ⊗ S contains all monomials in s of total

degrees d.
Since only bad outputs depend on erroneous seed bits such that σi+ei 6= σi, we
have that the output of G(1) agrees with the correct output y = Eval(σ) on all
good output bits.

∀j 6∈ BAD, Evalj(σ) = G
(1)
j (b, S) .

14

• To further correct bad output bits, we add to G(1) all the expanded correction
vectors as follows:

G
(2)
j (P, S) := G

(1)
j (b, S) +

(
Uφbkt(j)Vφbkt(j)

)
φind(j)

= G
(1)
j (b, S) +

(
Mφbkt(j)

)
φind(j)

.

We have that G(2) agrees with the correct output y = Eval(σ) if flag = 1. This is
because under the three conditions for flag = 1, every entry j in the correction
vector Corrj is placed at entry

(
Mφbkt(j)

)
φind(j)

. Adding it back as above produces
the correct output.
Observe that the function is quadratic in S and degree d in the public compo-
nent of the seed P .

• When flag = 0, however, sPRG needs to output all zero. This can be done by
simply multiplying flag to the output of G(2), giving the final polynomial

G(3)(P, S) = flag ·G(2)(P, S) . (4)

At last, G(3) has degree d+1 in the public seed, and only degree 2 in the private
seed, as desired.

Analysis of Stretch. We derive a set of constraints, under which sPRG has polynomial
stretch. Recall that PRG output length is m = nτ , degree d, LPN secret dimension ` =
n1/dd/2e, modulus p = O(2λ), and the slack parameter t = λ.

Claim 4.1. For the parameters as set in the Construction, sPRG has stretch of τ ′ for some constant
τ ′ > 1.

Proof. Let’s start by analyzing the length of the public and private seeds.

• The public seed contains P = (b, flag) and has bit length

|P | = O(n log p) = O(n · λ) .

• The private seed S contains S1, S2 as follows:

S1 = s⊗d
d
2
e, S2 = {Ui,Vi}i∈[B] .

The bit-lengths are:

|S1| =(`+ 1)dd/2e log p

=O
(
n

1
dd/2e

)dd/2e
log p = O(n · λ) by ` = ndd/2e, log p = λ

|S2| =2B · t ·
√
c · log p

=
2mt

`δ
· t · t`δ/2 · log p =

2mt3 log p

`δ/2
by B =

mt

`δ
, c = t2`δ

=
2mλ4

`δ/2
by t = λ

15

Because `δ/2 = n
δ

2d d2 e and m = nτ , we have:

|sd| = |P |+ |S1|+ |S2| = O((n+ n
τ− δ

2d d2 e) · λ4)

We set n′ = O(n + n
τ− δ

2d d2 e), therefore m = n′τ
′

for some τ ′ > 1. This concludes the
proof.

Proof of Pseudorandomness We prove the following proposition which implies that
sPRG is γ-pseudorandom for any constant γ.

Proposition 4.1. Let `, n, r, p be defined as above. For any running time T = T (λ) ∈ N, if

• LPN(`, n, r, p) is (T, εLPN)-indistinguishable for advantage εLPN = o(1), and

• PRG is (T, εPRG)-pseudorandom for advantage εPRG = o(1),

sPRG satisfies that for every constant γ ∈ (0, 1), the following two distributions are (T, γ)-
indistinguishable.{

(I,φ,A, b, flag, z) : (I, φ, A)← IdSamp′(1n
′
), (P, S)← SdSamp′(I ′), z ← Eval′(I, sd)

}
{

(I,φ,A, b, flag, r) : (I, φ, A)← IdSamp′(1n
′
), (P, S)← SdSamp′(I ′), r ← {0, 1}m

}
,

(Recall that P = (b, flag).)

We start with some intuition behind the proposition. Observe first that if flag is re-
moved, the above two distributions becomes truly indistinguishable. This follows from
the facts that i) I andφ are completely independent of (A, b, z) or (A, b, r), and ii) (A, b, z)
and (A, b, r) are indistinguishable following from the LPN over Zp assumption and the
pseudorandomness of PRG. The latter indistinguishability is the heart of the security of
sPRG, and is captured in Lemma 4.1 below. Towards the proposition, we need to addi-
tional show that publishing flag does not completely destroy the indistinguishability. This
follows from the facts that i) flag is only 0 with sub-constant probability, and ii) it can be
viewed as a single bit leakage of the randomness used for sampling the rest of the distri-
butions, and can be simulated efficiently by the leakage simulation lemma, Theorem 2.1.
The formal proof of the proposition below presents the details.

Lemma 4.1. Let G : {0, 1}1×n → {0, 1}1×m(n) be a (T, εPRG)-secure pseudorandom genera-
tor. Assume that LPN(`, n, r, p) is (T, εLPN)-secure. Then the following two distributions are
(T, εLPN + εPRG)-indistinguishable:

D1 =
{

(A, b = s ·A+ e+ σ, G(σ)) : A← Z`×np ; s← Z1×`
p ; e← D1×n

r (p); σ ← {0, 1}1×n
}

D2 =
{

(A, u, w) : A← Z`×np ; u← Z1×n
p ; w ← {0, 1}1×m(n)

}

16

Proof. We introduce one intermediate distribution D′ defined as follows:

D′ =
{

(A, u, G(σ)) : A← Z`×np ; u← Z1×n
p ; σ ← {0, 1}n

}
Now observe that D′ is (T, εLPN)-indistinguishable to D1 following immediately from the
(T, εLPN)-indistinguishability of the LPN(`, n, r, p) assumption. Finally, observe that D′
is (T, εPRG)-indistinguishable to D2 due to (T, εPRG)-security of G. Therefore, the lemma
holds.

Proof of Proposition 4.1. We now list a few hybrids H0,H1,H2,H3, where the first one cor-
responds to the first distribution in the proposition, and the last one corresponds to the
second distribution in the proposition. We abuse notation to also use Hi to denote the
output distribution of the hybrid. Let γ be the claimed advantage of the adversary A,
running in time Tq(λ) for a polynomial q. Let Dφ,I denote the the distribution that sam-
ples the functions φ.

Hybrid H0 samples (I ′, P,y) honestly as in the first distribution, that is,

Sample: A← Z`×np , s← Z1×`
p , e← D1×n

r (p), σ ← {0, 1}n

I ← IdSamp(1λ, 1n), y = EvalI(σ), φ← Dφ,I
Output: I, φ, A, b = sA+ e+ σ, flag · y

where flag = 1 iff:
1) |BAD| ≤ T and,
2) ∀i ∈ [B], |φ−1bkt(i) ∩ BAD| ≤ t and,

3) ∀i ∈ [B], |φ−1bkt(i)| ≤ `δ · t2.

Note that the value of flag is correlated with that of (I,φ,A, b,y). Therefore, flag can
be viewed as a single-bit leakage of the randomness used for sampling (I,φ,A, b,y).

Hybrid H1 instead of generating flag honestly, first samples X = (I,φ,A, b,y) honestly,
and then invokes the leakage simulation lemma, Lemma 2.1, to simulate flag using
X , for Tq(λ) + poly(λ) time adversaries with at most γ

3
advantage. Let Sim be the

simulator given by Theorem 2.1.

Sample: A← Z`×np , s← Z1×`
p , e← D1×n

r (p), σ ← {0, 1}n,
I ← IdSamp(1λ, 1n), y = EvalI(σ), φ← Dφ,I

Output: I, φ, A, b = sA+ e+ σ, flag · y
where flag = Sim(I,φ,A, b,y)

The leakage simulation lemma guarantees that the running time of Sim is bounded
by O((Tq(λ) + poly(λ)) · 9

γ2
· 21) = Tq′(λ)) for a fixed polynomial q′, and A cannot

distinguish H0 from H1 with advantage more than γ
3
.

Claim 4.2. For any adversary A running in time Tq(n) for some polynomial q,

|Pr[A(H0) = 1]− Pr[A(H1) = 1]| ≤ γ

3
.

Furthermore, the running time of Sim is Tq′(λ) for some polynomial q′.

17

This claim is immediate from Lemma 2.1.

Hybrid H2 samplesA, b and y uniformly and randomly.

Sample: A← Z`×np , b← Z1×n
p

I ← IdSamp(1λ, 1n), y ← {0, 1}m, φ← Dφ,I
Output: I, φ, A, b, flag · y

where flag = Sim(I,φ,A, b,y)

Lemma 4.1 shows that (A, b,y) generated honestly as in H1 and (A, b,y) sampled all
at random as in H2 are indistinguishable, due to the LPN assumption and the pseu-
dorandomness of PRG. Here the adversary A runs in time Tq(λ) and the simulator
Sim runs in time Tq′(λ) time, for polynomials q, q′. Thus, we get

Claim 4.3. For any adversary A, running in time T , if LPN(`, n, r, p) is (T, εLPN)-secure
and PRG satisfies (T, εPRG)-pseudorandomness, then,

|Pr[A(H1) = 1]− Pr[A(H2) = 1]| ≤ εPRG + εLPN

This claim follows immediately from Lemma 4.1.

Hybrid H3 no longer generates flag and simply outputs the random string y instead of
flag · y.

Sample: A← Z`×np , b← Z1×n
p

I ← IdSamp(1λ, 1n), y ← {0, 1}m, φ← Dφ,I
Output: I,φ, A, b,y

Observe that H2 and H3 are only distinguishable when flag = 0 in H2. By bounding
the probability of flag = 0 in H2, we can show that

Claim 4.4. For any adversary A,

|Pr[A(H2) = 1]− Pr[A(H3) = 1]| ≤ γ

2

The formal proof of this lemma is provided below.

Combining the hybrids above, we conclude that A cannot distinguish H0 and H3 with
advantage more than 5·γ

6
+ εPRG + εLPN < γ, which gives a contradiction. Therefore, the

indistinguishability stated in the proposition holds. We now complete the final remaining
piece – the proof of Claim 4.4.

Proof of Claim 4.4. This indistinguishability is statistical. We start with showing that the
probability that flag = 0 in H0 is O(1

logn
). Towards this, we bound probability of all three

conditions for setting flag = 0 and then apply the union bound.

18

• Pr[|BAD| > T] ≤ O(1
logn

). Observe that by the fact that EvalI has constant locality in

σ, the probability that any single output bit j ∈ [m] is bad is bounded byO(r) = O(1)
`δ

,
where r is the rate of LPN noises. Therefore, the expected number of bad output bits
is

E[|BAD|] =
O(1)m

`δ

Thus by Markov’s inequality,

Pr[|BAD| > T] ≤ 1

T
· O(1)m

`δ · T
=
O(1)

log n
.

The last equality follows from the fact that T = m·logn
`δ

.

• For any i ∈ [B], Prφbkt
[
|φ−1bkt(i) ∩ BAD| > t | |BAD| ≤ T

]
≤ negl(n). Suppose |BAD| =

T ′ where T ′ ≤ T , and since φbkt : [m]→ [B] is a random function, we have:

Pr
φbkt

[
|φ−1bkt(i) ∩ BAD| > t | |BAD| = T ′

]
≤
(
T ′

t

)
· 1

Bt

≤
(
e · T ′

t

)t
· 1

Bt
by Stirling’s approximation

≤
(e
t

)t
≤ e−t by T ′ < T < B

= negl(λ) by t = λ

• For any i ∈ B, Prφbkt [|φ−1bkt(i)| > `δ · t2] ≤ negl(λ). Since φbkt is a random function,

Pr
φbkt

[
|φ−1bkt(i)| > t2 · `δ

]
≤
(

m

`δ · t2

)
·
(

1

B

)`δ·t2
≤
(e ·m
`δ · t2

)`δ·t2
·
(

1

B

)`δ·t2
by Stirling’s approximation

=
(e ·m
B · `δ · t2

)`δ·t2
≤
(

1

t2

)`δ·t2
by B =

mt

`δ
>
em

`δ

≤ t−2t
2

= negl(λ) by `δ > 1 and t = λ

Applying the three observations above, from a union bound it follows that Pr[flag =
0] = O(1

logn
).

Next, for adversaries of run time Tq(λ), Claim 4.2 shows that H0 and H1 cannot be
distinguished with advantage more than γ

3
, and Claim 4.3 shows that H1 and H2 cannot

be distinguished with advantage more than εPRG + εLPN, which is sub-constant. Therefore,
the probability that flag = 0 in H2 is upper bounded by

Pr[flag = 0 in H2] ≤
O(1)

log n
+
γ

3
+ εPRG + εLPN ≤

γ

2
.

19

Finally, we upper bound the statistical distance between H2 and H3, which is

SD(H2,H3) =
1

2
·

∑
(I,φ,A,b,y)

∣∣∣Pr[H2 = (I,φ,A, b,y)]− Pr[H3 = (I,φ,A, b,y)]
∣∣∣ .

For b ∈ {0, 1}, let Fb be the set of tuples (I,A, b,y) that generate flag = b through Sim,

Fb = {(I,φ,A, b,y) | Sim((I,φ,A, b,y) = b} .

Then, we have:

SD(H2,H3) =
1

2
·

∑
(I,φ,A,b,y)∈F0

∣∣∣Pr[H2 = (I,φ,A, b,y)]− Pr[H3 = (I,φ,A, b,y)]
∣∣∣

+
1

2
·

∑
(I,φ,A,b,y)∈F1

∣∣∣Pr[H2 = (I,φ,A, b,y)]− Pr[H3 = (I,φ,A, b,y)]
∣∣∣

=
1

2
·

∑
(I,φ,A,b,y)∈F0

∣∣∣Pr[H2 = (I,φ,A, b,y)]− Pr[H3 = (I,φ,A, b,y)]
∣∣∣

≤ Pr[flag = 0 in H2] ≤
γ

2

where the second equality follows from the fact that in H2 and H3 the probability of out-
puting a tuple (I ′,φ,A, b,y) that belongs to F1, or equivalently generates flag = 1 via Sim,
is the same. This concludes the claim.

5 Bootstrapping to Indistinguishability Obfuscation

We now describe a pathway to iO and FE for all circuits.

From Structured-Seed PRG to Perturbation Resilient Generator. Starting from structured-
seed PRG, we show how to construct perturbation resilient generators, denoted as ∆RG.
∆RG is the key ingredient in several recent iO constructions [AJL+19, JLMS19, JLS19].
Roughly speaking, they have the same syntax as structured-seed PRGs with the notable
difference that it has integer outputs y of polynomial magnitude; further, they only sat-
isfy weak pseudorandomness called perturbation resilience guaranteeing that y + β for
arbitrary adversarially chosen small integer vector β is weakly indistinguishable from y
itself. The formal definition of ∆RG is provided in Definition 5.1 in Section 5.1.

Theorem 5.1 (sPRG to ∆RG, proven in Section 5.1). Let λ ∈ N be the security parameter,
γ ∈ (0, 1), and τ > 1. Assume the existence of a (subexponentially) γ-pseudorandom sPRG
in (C, deg d) with stretch τ . For any constant 0 < τ ′ < τ , there exists a (subexponentially)
(2γ +O(1

λ
))-perturbation resilient ∆RG in (C, deg d) with a stretch τ ′.

20

From Perturbation Resilient Generator to Weak FE for NC0. It was shown in [AJL+19,
JLMS19, JLS19] that ∆RG, along with SXDH, LWE and PRG in NC0, can be used to construct
a secret-key functional encryption scheme for NC0 circuits. The FE scheme supports only
a single secret key for a function with multiple output bits, has weak indistinguishability
security, and has ciphertexts whose sizes grow sublinearly in the circuit size and linearly
in the input length. Formal definitions of functional encryption schemes are provided
in B.

Theorem 5.2 ([AJL+19, JLMS19, JLS19]). Let γ ∈ (0, 1), ε > 0, and D ∈ N be arbitrary
constants. Let λ be a security parameter, p be an efficiently samplable λ bit prime, and k = k(λ)
be a large enough positive polynomial in λ. Assume (subexponential) hardness of

• the SXDH assumption with respect to a bilinear groups of order p,

• the LWE assumption with modulus-to-noise ratio 2k
ε where k = k(λ) is the dimension of

the secret,

• the existence of γ-secure perturbation resilient generators ∆RG ∈ (arith-NC0, deg 2) over
Zp with polynomial stretch.

There exists a secret-key functional encryption scheme for NC0 circuits with multilinear degree D
over Z, having

• 1-key, weakly selective, (subexponential) (γ + negl)-indistinguishability-security, and

• sublinearly compact ciphertext with linear dependency on input length, that is, ci-
phertext size is |ct| = poly(λ)(l + S1−σ), where l is the input length, S the maximum size
of the circuits supported, σ is some constant in (0, 1), and poly depends on D.

For convenient reference, the construction is recalled in Section B.

From weak FE for NC0 to Full-Fledged FE for All Polynomial Size Circuits Starting
from the above weak version of secret key functional encryption scheme – weak function
class NC0, weak security, and weak compactness – we apply known transformations to
obtain a full-fledged public key FE scheme for polynomial size circuits, satisfying adaptive
collusion resistant security, and having full compactness.

Theorem 5.3 (Strengthening FE). Let γ ∈ (0, 1). Let λ ∈ N be a security parameter and k(λ)
be a large enough positive polynomial. Assume the (subexponential) hardness of

• the LWE assumption with modulus-to-noise ratio 2k
ε where k = k(λ) is the dimension of

the secret, and

• the existence of Boolean PRGs in NC0 with polynomial stretch and multilinear degree d ∈ N
over Z.

There are the following transformations:

21

1. STARTING POINT.

Suppose there is a secret-key functional encryption scheme for NC0 circuits with multilinear
degree (3d+2) over Z, having 1-key, weakly selective, (subexponential) γ-indistinguishability
security, and sublinearly compact ciphertext and linear dependency on input length.

2. LIFTING FUNCTION CLASS [AJS15, LV16, LIN16].

There exists a secret-key functional encryption scheme for polynomial size circuits, having
1-key, weakly selective, (subexponential) (γ + negl)-indistinguishability security, and sub-
linearly compact ciphertexts, that is, |ct| = poly(λ, l)S1−σ.

3. SECURITY AMPLIFICATION [AJS18, AJL+19, JKMS20].

There exists a secret-key functional encryption scheme for polynomial-size circuits, having
1-key, weakly selective, (subexponentially) (negl-)indistinguishability security, and sublin-
early compact ciphertexts.

4. SECRET KEY TO PUBLIC KEY, AND SUBLINEAR CIPHERTEXT TO SUBLINEAR EN-
CRYPTION TIME [BNPW16, LPST16, GKP+13].

There exists a public-key functional encryption scheme for polynomial size circuits, hav-
ing 1-key, weakly selective, (subexponentially) indistinguishability security, and sublinear
encryption time, TEnc = poly(λ, l)S1−σ.

5. 1-KEY TO COLLUSION RESISTANCE [GS16, LM16, KNT18]

There exists a public-key functional encryption scheme for polynomial-size circuits, having
collusion resistant, adaptive, (subexponentially) indistinguishability security, and encryp-
tion time poly(λ, l).

FE to IO Transformation Finally, we rely on the FE to IO transformation to obtain iO.

Theorem 5.4 ([AJ15, BV15a]). Assume the existence of a public-key functional encryption scheme
for polynomial-size circuits, having 1-key, weakly selective, subexponentially indistinguishability
security, and sublinear encryption time. Then, (subexponentially secure) iO for polynomial size
circuits exists.

Putting Pieces Together Combining Theorem 4.1, Theorem 5.1, Theorem 5.2, Theorem
5.3, and Theorem 5.4, we get our main result:

Theorem 5.5. Let τ > 1, ε, δ ∈ (0, 1), and d ∈ N be arbitrary constants. Let λ ∈ N be a security
parameter, p be an efficiently samplable λ bit prime, and n = n(λ) and k = k(λ) be large enough
positive polynomials in the security parameter. Assume sub-exponential hardness of the following
assumptions:

• the LWE assumption with modulus-to-noise ratio 2k
ε where k is the dimension of the secret,

• the SXDH assumption with respect to bilinear groups of prime order p,

22

• the existence of a Boolean PRG in NC0 with polynomial stretch and multilinear degree d over
Z, and

• the LPN(`, n, `−δ, p) where ` = n
1

d d2 e .

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size circuits
exists. Further, assuming only polynomial security of these assumptions, there exists collusion
resistant, adaptive, and compact public-key functional encryption for all circuits.

5.1 Perturbation Resilient Generators

We recall the definition of perturbation resilient generators from [AJL+19, JLMS19, JLS19].

Definition 5.1 (Syntax of Perturbation Resilient Generators (∆RG) [AJL+19, JLMS19,
JLS19]). Let τ be a positive constant. A perturbation resilient generator ∆RG with stretch τ
is defined by the following PPT algorithms:

• SetupPoly(1λ, 1n, 1B) : takes as input the security parameter λ, a seed length parameter n,
and a bound B, samples a function index I .

• SetupSeed(I) : samples two binary strings, a public seed and a private seed, sd = (P, S).
The combined length of these strings is n · poly(λ, logB).

• Eval(I, sd) : takes as input the index I and the seed sd and computes a string in Zm ∩
[− poly(n,B, λ), poly(n,B, λ)]m for some fixed polynomial poly.

Remark 5.1. Similar to an sPRG, we say that ∆RG has polynomial stretch if above τ > 1
for some constant τ .

Remark 5.2. Note that in the definition proposed by [JLMS19, JLS19], the SetupSeed algo-
rithm was not given as input I , however, their results still hold even if SetupSeed is given
I as input.

Definition 5.2 (Security of ∆RG [AJL+19, JLMS19, JLS19]). A perturbation resilient genera-
tor ∆RG satisfies

(T, γ)-perturbation resilience: For every n = n(λ) a positive non-constant polynomial in the
security parameter λ, and B = B(λ, n) a positive non-constant polynomial in λ and n, and
every sequence {β = βλ}, where β ∈ Zm ∩ [−B,B]m, we require that the following two
distributions are (T (λ), γ(λ))-indistinguishable:

{(I, P, Eval(I, sd, B)) | I ← SetupPoly(1λ, 1n, 1B), sd = (S, P)← SetupSeed(I)}
{(I, P, Eval(I, sd, B) + β) | I ← SetupPoly(1λ, 1n, 1B), sd = (S, P)← SetupSeed(I)}

Definition 5.3 (Complexity and degree of ∆RG). Let d ∈ N, let λ ∈ N and n = n(λ) be
arbitrary positive non-constant polynomial in λ, and p = p(λ) denote a prime modulus which is
an efficiently computable function in λ. Let C be a complexity class. A ∆RG has complexity C
in the public seed and degree d in private seed over Zp, denoted as, ∆RG ∈ (C, deg d), if for any

23

polynomial B(n, λ) and every I in the support of SetupPoly(1λ, 1n, 1B), there exists an algorithm
ProcessI in C and an m(n)-tuple of polynomials QI that can be efficiently generated from I , such
that for all sd in the support of SetupSeed(I), it holds that:

Eval(I, sd) = QI(P , S) over Zp , P = ProcessI(P) ,

where QI has degree 1 in P and degree d in S.

We now prove the following proposition, which immediately implies Theorem 5.1.

Proposition 5.1. Assume the existence of a (T, γ)-pseudorandom structured seed PRG, sPRG, in
(C, deg d) with a stretch of τ > 0. Then for any constant 0 < τ ′ < τ , there exists a (T, 2·γ+O(1

λ
))-

perturbation resilient generator, ∆RG in (C, deg d) with a stretch τ ′.

Proof. Let sPRG be the given structured-seed PRG with stretch τ . The construction of ∆RG
is as follows.

• ∆RG.SetupPoly(1λ, 1n, 1B) : Run sPRG.IdSamp(1λ, 1n)→ I ′, and output I = (I ′, B, λ, n).

• ∆RG.SetupSeed(I) : Run sPRG.SdSamp(I ′)→ (P, S) and output sd = (P, S).

• ∆RG.Eval(I, sd) : Compute z ← sPRG.Eval(I ′, sd) where z ∈ {0, 1}nτ . Let m′ = nτ
′

and t = dlog2(λ · nτ
′ ·B)e.

– If m < m′t, there are not enough bits in the output of sPRG. Set y = 01×m′

– Otherwise, for every i ∈ [m′], set yi =
∑

j∈[t] 2
j−1 · z(i−1)·t+j .

Output y.

Stretch: The output length is exactly m′ = nτ
′ , while the seed length is identical to that

of sPRG, namely n poly(λ), as desired.
Further, observe that the output of ∆RG is set to 0 when there are not enough bits

in the output of sPRG, namely m < m′t. It is easy to see that for arbitrary non-constant
positive polynomials n = n(λ) and B = B(λ, n), it holds that t = O(log λ) and hence for
any 0 < τ ′ < τ , m = nτ ≥ m′t = nτ

′
t for sufficiently large λ. In this case, the output of

∆RG is formed by the output of sPRG.

Complexity: We note that ∆RG is in (C, deg d). In the case that m ≥ m′t, ∆RG.Eval(I, sd)
outputs y where yi =

∑
j∈[t] 2

j−1 · z(i−1)·t+j , and z = sPRG.Eval(I ′, sd). Since each yi is a
linear function of z and each zi is degree d in S, y is also degree d in S. Further since each
zi is linear in P = ProcessI(P) and ProcessI ∈ C, y is also linear in P = ProcessI(P). In the
other case that m < m′t, the output y = 01×m′ and had degree 0 in both P and S. Overall,
∆RG ∈ (C, deg d).

24

(T, 2 · γ + O(1
λ
))-perturbation resilience: Fix a sufficiently large λ ∈ N, positive non-

constant polynomials n = n(λ),B(λ, n)and β = βλ ∈ Zm∩[−B,B]m, and t = log2(λ·nτ
′ ·B).

We now show the perturbation resilience of ∆RG through a sequence of hybrids.

Hybrid H0: In this hybrid, we give to the adversary,

∀i ∈ [m′], yi =
∑
j∈[t]

2j−1 · z(i−1)·t+j + βi , z = sPRG.Eval(I ′, sd) ,

along with the public index I and the public part of the seed P . As observed above,
when n and B are positive non-constant polynomials, and λ is sufficiently large, it
always holds that m ≥ m′t and the output of ∆RG is non-zero and formed as above.
Thus, this hybrid corresponds to the first challenge distribution in the security defi-
nition of ∆RG (Definition 5.2).

Hybrid H1: In this hybrid, we change y to

yi =
∑
j∈[t]

2j−1 · r(i−1)·t+j + βi , r ← {0, 1}nτ .

This hybrid is (T, γ)-indistinguishable to hybrid H0 by the (T, γ)-pseudorandomness
of sPRG.

Hybrid H2: In this hybrid, we change y to

yi = ui + βi , ui ← [0, 2t − 1] .

This hybrid is identical to hybrid H1.

Hybrid H3: In this hybrid, we change y to

yi = ui , ui ← [0, 2t − 1] .

This hybrid is statistically close to hybrid H2 with the statistical distance bounded
by O(m′ · B

2t−1) = O(1
n
). This is because each ui is uniform between [0, 2t − 1] and

|βi| ≤ B.

Hybrid H4: In this hybrid, we change y to

yi =
∑
j∈[t]

2j−1 · r(i−1)·t+j , r ← {0, 1}nτ .

The hybrid above is identical to hybrid H3.

Hybrid H5: In this hybrid, we give to the adversary,

yi =
∑
j∈[t]

2j−1 · z(i−1)·t+j , z = sPRG.Eval(I ′, sd) .

This hybrid is (T, γ)-indistinguishable to hybrid H4 by the (T, γ)-pseudorandomness
of sPRG. By the same argument as in hybrid H0, we have m ≥ m′t and the output
of ∆RG is non-zero and exactly as above. Thus, this corresponds to the second
challenge distribution in Definition 5.2.

25

By a hybrid argument, we get that the total advantage in distinguishing the two challenge
distributions in the security definition of ∆RG is bounded by 2 · γ +O(1

λ
). This concludes

the proof.

6 Acknowledgements

We would like to thank Stefano Tessaro and James Bartusek for helpful discussions. We
would also like to thank the Simons Institute for the Theory of Computing, for hosting
all three authors during the program entitled “Lattices: Algorithms, Complexity, and
Cryptography”.

Aayush Jain was partially supported by grants listed under Amit Sahai, a Google PhD
fellowship and a DIMACS award. This work was partly carried out while the author
was an intern at NTT Research. This work was partly carried out during a research visit
conducted with support from DIMACS in association with its Special Focus on Cryptog-
raphy.

Huijia Lin was supported by NSF grants CNS-1528178, CNS-1929901, CNS-1936825 (CA-
REER), the Defense Advanced Research Projects Agency (DARPA) and Army Research
Office (ARO) under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002
through Galois.

Amit Sahai was supported in part from DARPA SAFEWARE and SIEVE awards, NTT
Research, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant 2012378, a
Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant
from Intel, and an Okawa Foundation Research Grant. This material is based upon
work supported by the Defense Advanced Research Projects Agency through Award
HR00112020024 and the ARL under Contract W911NF-15-C- 0205. Amit Sahai is also
grateful for the contributions of the LADWP to this effort.

The views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense, DARPA, ARO, Simons, Intel, Okawa Foundation,
ODNI, IARPA, DIMACS, BSF, Xerox, the National Science Foundation, NTT Research,
Google, or the U.S. Government.

26

7 References
[AAB15] Benny Applebaum, Jonathan Avron, and Christina Brzuska. Arithmetic cryptog-

raphy: Extended abstract. In Tim Roughgarden, editor, ITCS 2015, pages 143–151.
ACM, January 2015.

[ABR12] Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A dichotomy for local small-
bias generators. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages
600–617. Springer, Heidelberg, March 2012.

[ADI+17] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron.
Secure arithmetic computation with constant computational overhead. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 223–254. Springer, Heidelberg, August 2017.

[AGIS14] Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing obfus-
cation: Avoiding Barrington’s theorem. In ACM CCS, pages 646–658, 2014.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New
methods for bootstrapping and instantiation. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 191–225. Springer,
Heidelberg, May 2019.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Advances in Cryptology–CRYPTO 2015, pages 308–326.
Springer, 2015.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indis-
tinguishability obfuscation without multilinear maps: New paradigms via low de-
gree weak pseudorandomness and security amplification. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 284–332. Springer, Heidelberg, August 2019.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfusca-
tion from functional encryption for simple functions. Eprint, 730:2015, 2015.

[AJS18] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability obfuscation
without multilinear maps: io from lwe, bilinear maps, and weak pseudorandom-
ness. IACR Cryptology ePrint Archive, 2018:615, 2018.

[AL16] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local func-
tions and their countermeasures. In Daniel Wichs and Yishay Mansour, editors, 48th
ACM STOC, pages 1087–1100. ACM Press, June 2016.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th
FOCS, pages 298–307. IEEE Computer Society Press, October 2003.

[AP20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without
maps: Attacks and fixes for noisy linear FE. In Vincent Rijmen and Yuval Ishai,
editors, EUROCRYPT 2020, Part I, LNCS, pages 110–140. Springer, Heidelberg, May
2020.

27

[App12] Benny Applebaum. Pseudorandom generators with long stretch and low locality
from random local one-way functions. In Howard J. Karloff and Toniann Pitassi,
editors, 44th ACM STOC, pages 805–816. ACM Press, May 2012.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 152–181. Springer, Heidelberg, April / May 2017.

[BBKK17] Boaz Barak, Zvika Brakerski, Ilan Komargodski, and Pravesh Kothari. Limits on
low-degree pseudorandom generators (or: Sum-of-squares meets program obfusca-
tion). Electronic Colloquium on Computational Complexity (ECCC), 24:60, 2017.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient two-round OT extension and silent non-interactive secure
computation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 291–308. ACM Press, November 2019.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector
OLE. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 896–912. ACM Press, October 2018.

[BDGM20] Zvika Brakerski, Nico Dottling, Sanjam Garg, and Guilio Malavolta. Candidate io
from homomorphic encryption schemes. In EUROCRYPT, 2020.

[BFM14] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguishability ob-
fuscation and UCEs: The case of computationally unpredictable sources. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 188–205. Springer, Heidelberg, August 2014.

[BGdMM05] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose.
Correlation-resistant storage via keyword-searchable encryption. IACR Cryptol.
ePrint Arch., 2005:417, 2005.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume
8441 of Lecture Notes in Computer Science, pages 533–556. Springer, 2014.

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R.
Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold fully homo-
morphic encryption. In Hovav Shacham and Alexandra Boldyreva, editors, Ad-
vances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, volume 10991 of Lec-
ture Notes in Computer Science, pages 565–596. Springer, 2018.

[BGH+15] Zvika Brakerski, Craig Gentry, Shai Halevi, Tancrede Lepoint, Amit Sahai, and
Mehdi Tibouchi. Cryptanalysis of the quadratic zero-testing of GGH. Cryptology
ePrint Archive, Report 2015/845, 2015. http://eprint.iacr.org/.

28

http://eprint.iacr.org/

[BGI+01a] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Hei-
delberg, August 2001.

[BGI+01b] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, pages 1–18, 2001.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 221–238. Springer,
Heidelberg, May 2014.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012,
pages 309–325. ACM, January 2012.

[BHJ+19] Boaz Barak, Samuel B. Hopkins, Aayush Jain, Pravesh Kothari, and Amit Sahai.
Sum-of-squares meets program obfuscation, revisited. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 226–250.
Springer, Heidelberg, May 2019.

[BIJ+20] James Bartusek, Yuval Ishai, Aayush Jain, Fermi Ma, Amit Sahai, and Mark Zhandry.
Affine determinant programs: A framework for obfuscation and witness encryption.
In Thomas Vidick, editor, ITCS 2020, volume 151, pages 82:1–82:39. LIPIcs, January
2020.

[BJK15] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner prod-
uct encryption. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015,
Part I, volume 9452 of LNCS, pages 470–491. Springer, Heidelberg, November / De-
cember 2015.

[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan.
Overcoming the hole in the bucket: Public-key cryptography resilient to contin-
ual memory leakage. In 51st FOCS, pages 501–510. IEEE Computer Society Press,
October 2010.

[BKM+19] Allison Bishop, Lucas Kowalczyk, Tal Malkin, Valerio Pastro, Mariana Raykova, and
Kevin Shi. In pursuit of clarity in obfuscation. IACR Cryptol. ePrint Arch., 2019:463,
2019.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic PRFs and their applications. In Ran Canetti and Juan A. Garay, edi-
tors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 410–428. Springer, Heidel-
berg, August 2013.

[BLMZ19] James Bartusek, Tancrède Lepoint, Fermi Ma, and Mark Zhandry. New techniques
for obfuscating conjunctions. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part III, volume 11478 of LNCS, pages 636–666. Springer, Heidelberg,
May 2019.

29

[BMSZ16] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-
zeroizing obfuscation: New mathematical tools, and the case of evasive circuits. In
Advances in Cryptology - EUROCRYPT, pages 764–791, 2016.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From crypto-
mania to obfustopia through secret-key functional encryption. Cryptology ePrint
Archive, Report 2016/558, 2016. http://eprint.iacr.org/2016/558.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of
finding a Nash equilibrium. In Venkatesan Guruswami, editor, 56th FOCS, pages
1480–1498. IEEE Computer Society Press, October 2015.

[BQ12] Andrej Bogdanov and Youming Qiao. On the security of goldreich’s one-way func-
tion. Comput. Complex., 21(1):83–127, 2012.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In TCC, pages 1–25, 2014.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryp-
tion from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106.
IEEE Computer Society Press, October 2011.

[BV15a] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In FOCS. IEEE, 2015.

[BV15b] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs
from standard lattice assumptions - or: How to secretly embed a circuit in your PRF.
In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015
of LNCS, pages 1–30. Springer, Heidelberg, March 2015.

[BWZ14] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps
against zeroizing attacks. Cryptology ePrint Archive, Report 2014/930, 2014.

[CCL18] Yi-Hsiu Chen, Kai-Min Chung, and Jyun-Jie Liao. On the complexity of simulating
auxiliary input. In EUROCRYPT, Cham, 2018.

[CDM+18] Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and Yann
Rotella. On the concrete security of Goldreich’s pseudorandom generator. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume
11273 of LNCS, pages 96–124. Springer, Heidelberg, December 2018.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K.
Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing
without low-level zeroes: New MMAP attacks and their limitations. In CRYPTO,
2015.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In EUROCRYPT, 2015.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. In STOC, 2016.

30

http://eprint.iacr.org/2016/558

[CLL+12] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter IBE
and signatures via asymmetric pairings. In Michel Abdalla and Tanja Lange, edi-
tors, Pairing-Based Cryptography - Pairing 2012 - 5th International Conference, Cologne,
Germany, May 16-18, 2012, Revised Selected Papers, volume 7708 of Lecture Notes in
Computer Science, pages 122–140. Springer, 2012.

[CLR15] Jung Hee Cheon, Changmin Lee, and Hansol Ryu. Cryptanalysis of the new clt
multilinear maps. Cryptology ePrint Archive, Report 2015/934, 2015. http://
eprint.iacr.org/.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 476–493. Springer, Heidelberg, August 2013.

[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear
maps over the integers. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 267–286. Springer, Heidelberg,
August 2015.

[CM01] Mary Cryan and Peter Bro Miltersen. On pseudorandom generators in NC. In Jiri
Sgall, Ales Pultr, and Petr Kolman, editors, Mathematical Foundations of Computer Sci-
ence 2001, 26th International Symposium, MFCS 2001 Marianske Lazne, Czech Republic,
August 27-31, 2001, Proceedings, volume 2136 of Lecture Notes in Computer Science,
pages 272–284. Springer, 2001.

[DGG+16] Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukher-
jee. Obfuscation from low noise multilinear maps. IACR Cryptology ePrint Archive,
2016:599, 2016.

[DGN+17] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto Tri-
filetti. TinyOLE: Efficient actively secure two-party computation from oblivious lin-
ear function evaluation. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 2263–2276. ACM Press, Octo-
ber / November 2017.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky en-
cryption and its applications. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 93–122. Springer, Heidelberg,
August 2016.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional
encryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 578–602. Springer, Heidelberg, May 2014.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 1–17. Springer, Heidelberg, May 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

31

http://eprint.iacr.org/
http://eprint.iacr.org/

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 498–527. Springer, Heidelberg, March 2015.

[Gil52] E. N. Gilbert. A comparison of signalling alphabets. The Bell System Technical Journal,
31(3):504–522, 1952.

[GJK18] Craig Gentry, Charanjit S. Jutla, and Daniel Kane. Obfuscation using tensor prod-
ucts. Electronic Colloquium on Computational Complexity (ECCC), 25:149, 2018.

[GJLS20] Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfus-
cation from simple-to-state hard problems: New assumptions, new techniques, and
simplification. IACR Cryptol. ePrint Arch., 2020:764, 2020.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 555–564.
ACM, 2013.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time pro-
grams. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 39–56.
Springer, Heidelberg, August 2008.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris
Umans, editor, 58th FOCS, pages 612–621. IEEE Computer Society Press, October
2017.

[GNN17] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously secure oblivious
linear function evaluation with constant overhead. In Tsuyoshi Takagi and Thomas
Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 629–659.
Springer, Heidelberg, December 2017.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Electronic
Colloquium on Computational Complexity (ECCC), 7(90), 2000.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 579–604. Springer,
Heidelberg, August 2016.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork,
editors, 40th ACM STOC, pages 197–206. ACM Press, May 2008.

[GR04] Steven D. Galbraith and Victor Rotger. Easy decision-diffie-hellman groups. IACR
Cryptol. ePrint Arch., 2004:70, 2004.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages
415–432. Springer, Heidelberg, April 2008.

32

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional
encryption with polynomial loss. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part II, volume 9986 of LNCS, pages 419–442. Springer, Heidelberg,
October / November 2016.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 75–92. Springer, Heidelberg, August 2013.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryp-
tion with bounded collusions via multi-party computation. In Reihaneh Safavi-
Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179.
Springer, Heidelberg, August 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based en-
cryption for circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, edi-
tors, 45th ACM STOC, pages 545–554. ACM Press, June 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523. Springer, Heidelberg,
August 2015.

[Hal15] Shai Halevi. Graded encoding, variations on a scheme. IACR Cryptology ePrint
Archive, 2015:866, 2015.

[HB01] Nicholas J. Hopper and Manuel Blum. Secure human identification protocols. In
Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 52–66. Springer,
Heidelberg, December 2001.

[HJ15] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. IACR Cryptology ePrint
Archive, 2015:301, 2015.

[HJK+16] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and
Mark Zhandry. How to generate and use universal samplers. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages
715–744. Springer, Heidelberg, December 2016.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (lev-
eled) multilinear maps and identity-based aggregate signatures. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 494–512.
Springer, Heidelberg, August 2013.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation
with no honest majority. In TCC Conference, TCC 2009, San Francisco, CA, USA, March
15-17, 2009. Proceedings, pages 294–314, 2009.

[JKMS20] Aayush Jain, Alexis Korb, Nathan Manohar, and Amit Sahai. Amplifying functional
encryption, unconditionally. CRYPTO, 2020, 2020.

33

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness
of constant-degree expanding polynomials overa R to build iO. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages
251–281. Springer, Heidelberg, May 2019.

[JLS19] Aayush Jain, Huijia Lin, and Amit Sahai. Simplifying constructions and assump-
tions for iO. IACR Cryptol. ePrint Arch., 2019:1252, 2019.

[JR13] Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear sub-
spaces. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume
8269 of LNCS, pages 1–20. Springer, Heidelberg, December 2013.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability
obfuscation for turing machines with unbounded memory. In STOC, 2015.

[KMOW17] Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of
squares lower bounds for refuting any CSP. In Hamed Hatami, Pierre McKenzie,
and Valerie King, editors, 49th ACM STOC, pages 132–145. ACM Press, June 2017.

[KNT18] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Obfustopia built on secret-
key functional encryption. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part II, volume 10821 of LNCS, pages 603–648. Springer, Heidelberg,
April / May 2018.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 28–57. Springer, Heidelberg, May 2016.

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and
locality-5 PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 599–629. Springer, Heidelberg, August 2017.

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in functional
encryption. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume
9986 of LNCS, pages 443–468. Springer, Heidelberg, October / November 2016.

[LM18] Huijia Lin and Christian Matt. Pseudo flawed-smudging generators and their appli-
cation to indistinguishability obfuscation. IACR Cryptology ePrint Archive, 2018:646,
2018.

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability ob-
fuscation with non-trivial efficiency. In IACR International Workshop on Public Key
Cryptography, pages 447–462. Springer, 2016.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear
maps and block-wise local PRGs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 630–660. Springer, Heidelberg,
August 2017.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th
FOCS, pages 11–20. IEEE Computer Society Press, October 2016.

34

[LV17] Alex Lombardi and Vinod Vaikuntanathan. Limits on the locality of pseudorandom
generators and applications to indistinguishability obfuscation. In Yael Kalai and
Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 119–137.
Springer, Heidelberg, November 2017.

[MF15] Brice Minaud and Pierre-Alain Fouque. Cryptanalysis of the new multilinear map
over the integers. Cryptology ePrint Archive, Report 2015/941, 2015. http://
eprint.iacr.org/.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small param-
eters. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 21–39. Springer, Heidelberg, August 2013.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based
on Gaussian measures. In 45th FOCS, pages 372–381. IEEE Computer Society Press,
October 2004.

[MST03] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0.
In 44th FOCS, pages 136–145. IEEE Computer Society Press, October 2003.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear
maps: Cryptanalysis of indistinguishability obfuscation over GGH13. In Advances
in Cryptology - CRYPTO, 2016.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 735–763. Springer, Heidelberg, May 2016.

[OW14] Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In IEEE 29th Conference on Computational Complexity, CCC 2014,
Vancouver, BC, Canada, June 11-13, 2014, pages 1–12. IEEE Computer Society, 2014.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector prob-
lem: extended abstract. In Michael Mitzenmacher, editor, Proceedings of the 41st An-
nual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May
31 - June 2, 2009, pages 333–342. ACM, 2009.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Pro-
ceedings, Part I, pages 500–517, 2014.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In STOC, pages 84–93, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, STOC, pages 475–484. ACM,
2014.

[Var57] Rom Varshamov. Estimate of the number of signals in error correcting codes. Dokl.
Akad. Nauk SSSR, 1957.

35

http://eprint.iacr.org/
http://eprint.iacr.org/

[Ver01] Eric R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 195–210. Springer, Heidelberg, May 2001.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs
under LWE. In Chris Umans, editor, 58th FOCS, pages 600–611. IEEE Computer
Society Press, October 2017.

A Partially Hiding Functional Encryption

We recall the notion of Partially-hiding Functional Encryption (PHFE) schemes; some
of the text in this section is taken verbatim from [GJLS20]. PHFE involves functional
secret keys, each of which is associated with some 2-ary function f , and decryption of a
ciphertext encrypting (x,y) with such a key reveals f(x,y), x, f , and nothing more about
y. Since only the input y is hidden, such an FE scheme is called partially-hiding FE. FE
can be viewed as a special case of PHFE where the public input is the empty string. The
notion was originally introduced by [GVW12] and a similar notion of partially-hiding
predicate encryption was proposed and constructed by [GVW15].

We denote functionality by F : X × Y → Z . The functionality ensemble F as well as
the message ensembles X and Y are indexed by two parameters: n and λ (for example
Fn,λ), where λ is the security parameter and n is a length parameter and can be viewed as
a function of λ.

Definition A.1. (Syntax of a PHFE/FE Scheme.) A secret key partially hiding functional en-
cryption scheme, PHFE, for the functionalityF : X ×Y → Z consists of the following polynomial
time algorithms:

• PPGen(1λ, 1n) : The public parameter generation algorithm is a randomized algorithm that
takes as input n and λ and outputs a string crs.

• Setup(crs): The setup algorithm is a randomized algorithm that on input crs, returns a
master secret key msk.

• Enc(msk, (x, y) ∈ Xn,λ × Yn,λ): The encryption algorithm is a randomized algorithm that
takes in a master secret key and a message (x, y) and returns the ciphertext ct along with the
input x. x is referred to as the public input whereas y is called the private input.

• KeyGen(msk, f ∈ Fn,λ): The key generation algorithm is a randomized algorithms that
takes in a description of a function f ∈ Fn,λ and returns skf , a decryption key for f .

• Dec(skf , (x, ct)): The decryption algorithm is a deterministic algorithm that returns a value
z in Z , or ⊥ if it fails.

A functional encryption scheme is a partially hiding functional encryption scheme, where
Xn,λ = ∅ for all n, λ.

Define three levels of efficiency: let S = S(λ, n) be the maximum size of functions in Fλ,n;
ciphertext ct produced by running PPGen, Setup,Enc honestly as above has the following sizes
with respect to some arbitrary constant ε ∈ (0, 1].

36

• Sublinear compactness: poly(λ, n)S1−ε

• Sublinear compactness and linear dependency on input length: poly(λ)(n+ S1−ε)

• Linear Efficiency: poly(λ)n

We surpress the public input in notation in the case of functional encryption.

Definition A.2. (Correctness of a PHFE/FE scheme.) A secret key partially hiding functional
encryption scheme, PHFE, for the functionality F : X × Y → Z is correct if for every λ ∈ N and
every polynomial n(λ) ∈ N, for every (x, y) ∈ Xn,λ × Yn,λ and every f ∈ Fn,λ, we have:

Pr

Dec(skf , x, ct)) = f(x, y)

∣∣∣∣∣
PPGen(1λ, 1n)→ crs
Setup(crs)→ msk
Enc(msk, (x, y))→ (x, ct)
KeyGen(msk, f)→ skf

 = 1

Definition A.3 (Simulation security). A secret-key partially hiding functional encryption scheme
PHFE for functionality F : X × Y → Z is (weakly selective) (T, ε)-SIM secure, if for every posi-
tive polynomials n = n(λ), Qct = Qct(λ), Qsk = Qsk(λ), ensembles {(x, y)}, {{(xi, yi)}i∈[Qct]} in
Xλ,n × Yλ,n and {{fj}j∈[Qsk]} in Fλ,n, the following distributions are (T, ε)-indistinguishable.

(
crs, ct, {cti}i∈[Qct], {skj}j∈[Qsk]

) ∣∣∣∣∣
crs← PPGen(1λ, 1n), msk← Setup(crs)
ct← Enc(msk, (x, y))
∀i ∈ [Qct], cti ← Enc(msk, (xi, yi))
∀j ∈ [Qsk], skj ← KeyGen(msk, fj)


(

crs, c̃t, {c̃ti}i∈[Qct], {s̃kj}j∈[Qsk]

) ∣∣∣∣∣
crs← PPGen(1λ, 1n), m̃sk← S̃etup(crs)

c̃t← Ẽnc1(m̃sk, x)

∀i ∈ [Qct], c̃ti ← Ẽnc2(m̃sk, (xi, yi))

∀j ∈ [Qsk], s̃kj ← KeyGen(m̃sk, fj, fj(x, y))


Definition A.4 (Indistinguishability security). A secret-key functional encryption scheme FE
for functionality F : X → Z is (weakly selective) (T, ε)-IND secure, if for every positive poly-
nomials n = n(λ), Qct = Qct(λ), Qsk = Qsk(λ), ensembles {{xi,0, xi,0}i∈[Qct]} in Xλ,n and
{{fj}j∈[Qsk]} in Fλ,n, the following distributions for b ∈ {0, 1} are (T, ε)-indistinguishable.(crs, {cti}i∈[Qct], {skj}j∈[Qsk]

) ∣∣∣∣∣
crs← PPGen(1λ, 1n), msk← Setup(crs)
∀i ∈ [Qct], cti ← Enc(msk, xi,b)
∀j ∈ [Qsk], skj ← KeyGen(msk, fj)


B Recap of constant-depth functional encryption

We give a self-contained description of a construction of 1-key secret-key FE for NC0 sat-
isfying sublinear compactness with linear dependency on input length, which can be trans-
formed to iO as described in Section 5. We emphasize that the construction of FE for NC0

recalled here was given by prior works [AJL+19, JLMS19, LV16, Lin16]. The purpose of

37

this appendix is providing a clean and self-contained description of the construction for
convenient lookup, and we omit the security proof.

Consider the class of NC0 functions g : {0, 1}l → {0, 1}m. Such functions can be com-
puted by a multilinear polynomial with 1/-1 coefficient of some constant degree D. We
now describe the FE scheme for computing such functions, which uses the following in-
gredients.

Ingredients. Let λ be the security parameter and p = p(λ) = O(2λ) an efficiently com-
putable prime modulus.

• LWE over Zp with subexponential modulus to noise ratio 2k
ε where k is the dimen-

sion of LWE secret and ε is some arbitrary constant in (0, 1).

Related parameters are set to:

– We use polynomially large noises: Let χα,B be the truncated discrete gaussian
distribution with parameter α and support [−B,B] ∩ Z, where α ≤ B are set
appropriately and of magnitude poly(λ). As such, the modulus-to-noise ratio
is p/ poly(λ).

– Set the LWE dimension k appropriately k = Θ(λ1/ε) such that the modulus-to-
noise ratio p/ poly(λ) is upper bounded by 2k

ε .

We will use the basic homomorphic encryption scheme by [BV11] based on LWE.
An encryption of a Boolean string x has form A, b = sA + 2e + x over Zp and
supports homomorphic evaluation of constant degree polynomials over Zp (without
relinearization).

• A perturbation resilient generator ∆RG = (SetupPoly, SetupSeed,Eval) with stretch
τ > 1 and complexity (arith-NC1, deg 2) over Zp. Such a ∆RG was constructed in
Section 5, based on Boolean PRGs in NC0 the LPN assumption over Zp.
Related parameters are set to:

– The bound on the noises to be smudged is set to be BD · lD · λ.

– The output length of ∆RG is m, matching the output length of the NC0 compu-
tation.

– The seed length is then n poly(λ) for n = m1/τ .

• A SIM-secure collusion-resistant secret-key scheme for (arith-NC1, deg 2), PHFE =
(PHFE.PPGen,PHFE.Setup,PHFE.Enc,PHFE.KeyGen,PHFE.Dec). This can be built from
the SXDH assumption over asymmetric bilinear groups of order p as presented in
[JLS19].

Related parameters are set to:

– The input length parameter n′ is an efficiently computable function depending
on n, k,D set implicitly in the Enc algorithm below.

38

Construction: The NC0-FE scheme FE = (PPGen, Setup,Enc,KeyGen,Dec) is as follows:

crs← PPGen(1λ, 1l): SampleA← Zk×lp , crsPHFE ← PHFE.PPGen(1λ, 1n
′
),

and I ← ∆RG.SetupPoly(1λ, 1n, 1B
D·lD·λ). Output crs = (crsPHFE, I,A).

msk← Setup(crs): Sample mskPHFE ← PHFE.Setup(crsPHFE) and output msk = (mskPHFE, crs).

ct← Enc(msk,x ∈ {0, 1}l):

• Sample (P, S) ← ∆RG.SetupSeed(I). Note that the seed has length |P | + |S| =
n poly(λ).

• Encrypt x as follows: Sample a secret s ← Zkp and noise vector e ← χlα,B, and
compute b = sA+ 2e+ x.

• Let s = (1‖s) and compute s⊗d
D
2
e.

• Set public inputX = (P, b) and private input Y = (S, s⊗d
D
2
e), and encrypt them

using PHFE, ct← PHFE.Enc(msk, (X, Y)).

Output ct.

sk← KeyGen(msk, g): Output a PHFE key skPHFE ← PHFE.KeyGen(msk, G) for the follow-
ing function G.

Function G takes public input X and private input Y and does the following:

• Compute f(x) + 2e′ via a polynomial G(1) that has degree D in X and degree 2
in Y .
Function G(1) is defined as follows: Since f is a degree D multilinear polyno-
mial with 1/-1 coefficients, we have (using the same notation as in Section 4)

∀j ∈ [m], fj(x) = Lj((xv)v∈fj) for some linear Lj with 1/-1 coefficients .

The decryption equation for b is

∀i ∈ [l], xi + 2ei = 〈ci, s〉 ci = −aT
i ||bi, ai is the ith column ofA .

Thus, we have

∀ degree D monomial v, xv + 2ev = 〈⊗i∈vci, ⊗i∈vs〉

∀j ∈ [m], fj(x) + 2e′j = Lj

(
(〈⊗i∈vci, ⊗i∈vs〉)v∈fj

)
e′j = Lj((ev)v∈fj) has poly(λ) magnitude

Define G(1) to be the polynomial that computes f(x) + 2e′

G(1)(X, Y) = f(x) + 2e′ ,

with degree D in X (containing b) and degree 2 in Y (containing s⊗d
D
2
e). G(1)

also depends onA.

39

• Compute r ← ∆RG.Eval(I, sd).

• Output y′ = y + 2ef + 2r.

Observe that because of the complexity of G(1) and ∆RG, G is in (arith-NC1,deg 2).

Dec(sk, ct): Decrypt the PHFE ciphertext y + 2e′ = G(X, Y) ← PHFE.Dec(skPHFE, ctPHFE),
which reveals y mod 2.

More precisely, the decryption of PHFE built from bilinear groups produces g
(yj+2e′j)

T

for every j ∈ [m], where gT is the generator of the target group. Thus, decryption
needs to first extracts yj + 2e′j by brute force discrete logarithm, which is efficient as
e′j has poly(λ) magnitude.

Sublinear Compactness with Linear Dependency on Input Length Observe that the
ciphertext ct produced above has size poly(λ, l)S1−ε = poly(λ, l)m1−ε for some ε ∈ (0, 1),
following from the following facts:

• By the linear efficiency of PHFE, |ct| = poly(λ)(|X|+ |Y |).

• The seed P, S of ∆RG has length m1/τ for τ > 1.

• |b| = k log p = O(kλ).

• s⊗d
D
2
e has size kd

D
2
e log p = O(λ(d

D
2
e/ε)+1) = poly(λ).

40

Factoring and Pairings are not Necessary for iO:

Circular-Secure LWE Suffices

Zvika Brakerski∗1, Nico Döttling2, Sanjam Garg†3, and Giulio Malavolta4

1Weizmann Institute of Science
2CISPA Helmoltz Center for Information Security

3UC Berkeley
4Max Planck Institute for Security and Privacy

Abstract

We construct indistinguishability obfuscation (iO) solely under circular-security properties of encryp-
tion schemes based on the Learning with Errors (LWE) problem. Circular-security assumptions were used
before to construct (non-leveled) fully-homomorphic encryption (FHE), but our assumption is stronger
and requires circular randomness-leakage-resilience. In contrast with prior works, this assumption can
be conjectured to be post-quantum secure; yielding the first provably secure iO construction that is
(plausibly) post-quantum secure.

Our work follows the high-level outline of the recent work of Gay and Pass [ePrint 2020], who showed
a way to remove the heuristic step from the homomorphic-encryption based iO approach of Brakerski,
Döttling, Garg, and Malavolta [EUROCRYPT 2020]. They thus obtain a construction proved secure
under circular security assumption of natural homomorphic encryption schemes — specifically, they use
homomorphic encryption schemes based on LWE and DCR, respectively. In this work we show how to
remove the DCR assumption and remain with a scheme based on the circular security of LWE alone.
Along the way we relax some of the requirements in the Gay-Pass blueprint and thus obtain a scheme
that is secure under a relaxed assumption. Specifically, we do not require security in the presence of a
key-cycle, but rather only in the presence of a key-randomness cycle.

1 Introduction

The goal of program obfuscation [Had00, BGI+01] is to transform an arbitrary circuit Π into an unintelli-
gible but functionally equivalent circuit Π̃. The aforementioned works showed that strong simulation-based
notions of obfuscation were impossible for general purpose functionalities. However, the seemingly weaker
indistinguishability obfuscation (iO) was not ruled out by prior work (and has in fact been shown to be
the same as the best possible notion of obfuscation [GR07]). In broad terms, iO requires that if two cir-
cuits Π0 and Π1 are two implementations of the same function, then their obfuscations are computationally
indistinguishable.

Garg et al. [GGH13a, GGH+13b] presented the first candidate for general purpose iO, paving the way
for numerous other candidates based on a variety of mathematical structures. Although iO appears to
be a weak notion of security, it has been shown to be sufficient for numerous cryptographic applications,

∗Supported by the Binational Science Foundation (Grant No. 2016726), and by the European Union Horizon 2020 Research
and Innovation Program via ERC Project REACT (Grant 756482) and via Project PROMETHEUS (Grant 780701).
†Supported in part from AFOSR Award FA9550-19-1-0200, AFOSR YIP Award, NSF CNS Award 1936826, DARPA and

SPAWAR under contract N66001-15-C-4065, DARPA/ARL SAFEWARE Award W911NF15C0210, a Hellman Award and
research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The
views expressed are those of the authors and do not reflect the official policy or position of the funding agencies.

1

including ones that were previously not known to exist under other assumptions (see [SW14,GGHR14,BZ14]
for examples). The first realizations of obfuscation relied an a new algebraic object called multilinear
maps [GGH13a, CLT13, GGH15], which had only recently been constructed. Furthermore, the security of
these objects relied on new (and poorly understood) computational intractability assumptions, or more
commonly on plain heuristics. In fact, several attacks on multilinear map candidates [CHL+15,HJ16] and on
obfuscation constructions based on multilinear maps [MSZ16,CGH17] were demonstrated. To defend against
these attacks, several safeguards have been (e.g., [GMM+16,CVW18,MZ18,BGMZ18,DGG+18]) proposed.
Even with these heuristic safeguards, all but the schemes based on the Gentry et al. [GGH15] multilinear
maps are known to broken against quantum adversaries.

Towards the goal of avoiding heuristics and obtaining provably secure constructions, substantial effort
was made towards obtaining iO while minimizing (with the ultimate goal of removing) the use of multilinear
maps [Lin16, LV16, AS17, Lin17, LT17]. These efforts culminated in replacing the use of multilinear maps
with just bilinear maps [Agr19, JLMS19, AJL+19], together with an additional pseudorandom generator
with special properties. Very recently this last limitation was removed by Jain, Lin and Sahai [JLS20].
Specifically, they obtained iO based on the combined (sub-exponential) hardness of the Learning with Errors
problem (LWE), a large-modulus variant of the Learning Parity with Noise problem (LPN), the existence
of a pseudorandom generator in NC0, and in addition the hardness of the external Diffie-Hellman problem
in bilinear groups (SXDH). We note that the use of the pairings makes these construction insecure against
quantum adversaries.

A different approach towards provably secure iO, which is more relevant to this work, was presented
by Brakerski et al. [BDGM20]. They showed an iO candidate that is based on combining certain natural
homomorphic encryption schemes. However, their construction was heuristic in the sense that security
argument could only be presented in the random oracle model. In a recent work, Gay and Pass [GP20]
showed a way to remove the heuristic step and instead rely on a concrete assumption. Their construction
is proved secure under the circular security of natural homomorphic encryption schemes — specifically,
they use homomorphic encryption schemes based on LWE and Decisional Composite Residuosity (DCR,
also known as Paillier’s assumption). In terms of assumptions, their construction assumes sub-exponential
security of (i) the Learning with Error (LWE) assumption, (ii) the Decisional Composite Residuosity (DCR)
assumption, and (iii) a new notion of security that they call “shielded randomness leakage” (SRL). The
latter essentially requires that a fully homomorphic encryption scheme (specifically the GSW encryption
scheme [GSW13]) remains secure even in the presence of a key-cycle with the Damg̊ard-Jurik encryption
scheme [DJ01]. Moreover, the notion of security is not the standard semantic security, but rather a new
notion of security with respect to leakage of ciphertext randomness. We note that this construction is
insecure against quantum attackers because of the use of the Damg̊ard-Jurik encryption scheme [DJ01].1 In
this work, we ask:

Can we realize provably secure constructions of iO based solely on hard problems in lattices?

1.1 Our results

We obtain a general purpose iO construction based solely on the circular security of LWE-based encryption
schemes. This is done by presenting a “packed” variant of the dual-Regev LWE-based encryption scheme,
and showing novel ways of manipulating ciphertexts of this variant in conjunction with ciphertexts of an FHE
scheme. This allows us to remove the need for DCR-based encryption from the construction of [BDGM20,
GP20]. Furthermore, our technique allows to relax the SRL security property that is required, so that
we no longer need to require SRL security with respect to a key-cycle, but rather only with respect to a
key-randomness cycle. We put forth this potentially weaker assumption as an object for further study.

The security of our construction relies thus on a circular-security assumption (either SRL security as
in [GP20] or our weaker key-randomness circularity notion). The term “circular security” refers to the
notion where the security properties of an encryption scheme are preserved even when given an encryption
of the secret key itself, or, as in this case, given a “key cycle” where the key of the first scheme is encrypted

1Later, [GP20] updated their manuscript to also include a solution based on LWE. See Section 1.3 for additional discussion.

2

using the second scheme, and the key of the second scheme is encrypted using the first scheme. Circular
security assumptions are commonly used in the literature. Notably, they are known to imply such primitives
as “unrestricted” (non-leveled) fully homomorphic encryption (FHE) schemes via Gentry’s bootstrapping
paradigm [Gen09].

Concretely, the circular assumption made in [GP20], and thus also in this work, is that a scheme (in
particular a leveled FHE scheme) which enjoys the property that security is maintained even given some
particular kind of leakage on the randomness of the ciphertext. Indeed, standard GSW encryption [GSW13]
satisfies SRL security (under the LWE assumption), and the assumption we make is that SLR security holds
even when given a key-cycle connecting GSW to another encryption scheme. The second scheme in [GP20]
was based on DCR, whereas in our case this second encryption scheme is also based on LWE. While this
assumption falls into the category of “circular security assumptions”, similarly to the ones that underlie
bootstrapping in FHE, the concrete assumption is quite different. While in the FHE setting it was only
assumed that (standard) CPA security is preserved given a key cycle, here we assume that the stronger SRL
property remains intact.

Let us now state our results somewhat more precisely.

Theorem 1.1 (Informal) Assume the (sub-exponential) hardness of the LWE problem, and the SRL secu-
rity of GSW in the presence of a 2-key cycle with a packed variant of dual-Regev, then there exists indistin-
guishability obfuscation for all circuits.

We note that if we further assume that circular security also maintains post-quantum security, then our
assumption becomes post-quantum secure; yielding the first provably secure iO construction that is post-
quantum secure. Additionally, our techniques yield also a scheme provably secure against the (potentially)
weaker assumption of key-randomness SRL security, i.e. that SRL security is retained in the presence of a
(packed) dual Regev encryption of the GSW secret key and a GSW encryption of the randomness used in
such a ciphertext.

Theorem 1.2 (Informal) Assume the (sub-exponential) hardness of the LWE problem, and the SRL secu-
rity of GSW in the presence of a randomness-key cycle with a packed variant of dual-Regev, then there exists
indistinguishability obfuscation for all circuits.

1.2 Technical Overview

We now provide a technical outline of our construction and its properties.

Obfuscation via Homomorphic Encryption. The connection between (fully) homomorphic encryption
and obfuscation is fairly straightforward. Given a program Π to be obfuscated, we can provide a ciphertext
cΠ which encrypts Π under an FHE scheme. This will allow to use homomorphism to derive cx = Enc(Π(x))
for all x. Now all that is needed is a way to decrypt cx in a way that does not reveal any information on
Π. Early works (e.g. [GGH+13b] and followups) attempted to use this approach and provide a “defective”
version of the secret key of the FHE scheme, but a different approach was suggested in [BDGM20].

Specifically, [BDGM20] considered a homomorphic evaluation that takes cΠ to cTT, an encryption of the
entire truth table of Π, i.e. to an encryption of a multi-bit value. By relying on prior generic transforma-
tions [LPST16], they showed that one can reduce the task of constructing general-purpose obfuscation to
the task of computing a “decryption” hint for cTT with the following properties:

• Succinctness: The size of the decryption hint must be sublinear in the size of the truth table |TT|.

• Simulatability: The decryption hint should not reveal any additional information besides the truth
table TT.

The reason why this is helpful is that some so-called “packed-encryption” schemes have the property that
a short ciphertext-dependent decryption hint suffices in order to decrypt the ciphertext, in a way that does

3

not seem to leak the secret key of the scheme itself. While standard FHE schemes do not natively support
packed encryption, it was shown in [BDGM19] that it is possible to use the so-called key-switching technique
to switch from an FHE scheme into a packed-encryption scheme.

Alas, when instantiating the components of the [BDGM20] approach in its simplistic form described
above, the decryption hint leaks information that renders the scheme insecure. To counter this issue,
[BDGM20] proposed to inject another source of randomness: By adding freshly sampled ciphertexts of
the packed-encryption scheme (which in their case was instantiated with the Damg̊ard-Jurik scheme [DJ01])
one can smudge the leakage of the decryption hint. However the size of these fresh ciphertext would largely
exceed the size of the truth table TT. Therefore, [BDGM20] proposed to heuristically sample them from a
random oracle, leveraging the fact that the ciphertexts of [DJ01] are dense, i.e. a uniformly sampled string
lies in the support of the encryption algorithm with all but negligible probability. This led to a candidate,
but without a proof of security.

A Provably Secure Scheme. In a recent work, Gay and Pass [GP20] observed that for the purpose of
constructing obfuscation, it suffices to consider schemes in the common random string (CRS) model where,
importantly, the size of the CRS can exceed the size of the truth table. This allowed them to place the
Damg̊ard-Jurik ciphertexts in the CRS and therefore avoid relying on random-oracle-like heuristics.

They propose a new method to prove the security of this approach: Leveraging the structural property of
the GSW scheme [GSW13]. They showed that adding a GSW encryption of 0 to the evaluated FHE ciphertext
(before key-switching to Damg̊ard-Jurik) allows one to program the FHE ciphertext in the security proof.
To sample these GSW encryptions of 0, they propose to draw the random coins r∗ again from the CRS and
let the evaluator recompute the correct ciphertext GSW.Enc(0; r∗).

Taken together, these new ideas allow them to prove their construction secure against the shielded
randomness leakage (SRL) security of the resulting FHE scheme. Loosely speaking, SRL security requires
that semantic security of an encryption scheme is retained in the presence of an oracle that leaks the
randomness rf of the homomorphic evaluation of the function f over the challenge ciphertext. However the
randomness rf is not revealed in plain to the adversary, instead it is “shielded” by the random coins of a
fresh GSW ciphertext c = GSW.Enc(0; r∗). That is, the adversary is given (rf −r∗, c). In fact, the adversary
can obtain polynomially-many samples from this distribution, for any function f , conditioned on the fact
that the adversary knows the output of f(m∗), where m∗ is the hidden message.

To gain confidence in the veracity of the assumption, [GP20] show that the GSW encryption scheme
satisfies SRL security if the (plain) LWE assumption holds. However, their obfuscation scheme requires
one to publish a key cycle of GSW and Damg̊ard-Jurik (i.e. an encryption of the GSW secrey key under
Damg̊ard-Jurik and vice versa). Thus their final assumption is that SRL security is retained in the presence
of such a key cycle.

Obfuscation from Circular-Secure LWE. We wish to remove the need for the Damg̊ard-Jurik encryp-
tion scheme from the above construction paradigm. The major obstacle to overcome consists is designing
an LWE-based encryption scheme that simultaneously satisfies three properties.

• Linear Homomorphism: In order to key switch the GSW ciphertext into this form, the scheme must
satisfy some weak notion of homomorphism. Specifically, it must support the homomorphic evaluation
of linear functions.

• Succinct Randomness: The scheme must allow us to encrypt a long message string with a short
randomness, that can then function as the decryption hint.

• Dense Ciphertexts: A uniformly sampled string must lie in the support of the encryption algorithm
with all but negligible probability. This will allow us to parse the CRS as a collection of ciphertexts.2

2Note that for the purpose of constructing the obfuscator, one could make do with a common reference string which can
have an arbitrary distribution. However, the string needs to be parsed as a ciphertext with respect to all public-keys. Requiring
dense ciphertexts is a simple requirement that implies this property.

4

Unfortunately all natural lattice-based candidates seem to fail to satisfy all of these properties. In particular,
for all LWE-based schemes linear homomorphism seems to be at odds with dense ciphertexts: To ensure that
the noise accumulated during the homomorphic evaluation does not impact the decryption correctness, one
needs to ensure a gap between the noise bound and the modulus. More concretely, ciphertext are typically
of the form (a,a · s + e+ q/2 ·m) ∈ Zn+1

q where e� q, which makes them inherently sparse.

Our Solution: A Packed Variant of Dual-Regev that is also Dense-Friendly. We show that the
above requirements can be relaxed. Our starting point is devising a “packed” version of the dual-Regev
encryption scheme [GPV08]. This scheme will not have dense ciphertexts so it does not fit the requirements
from previous works. However, we will show how we can define, for the same scheme, a family of ciphertexts
which are both “almost dense” and can inter-operate with the non-dense scheme, so as to allow to construct
the obfuscator.

Let us start with our packed dual-Regev scheme. To pack a k-bit plaintext m ∈ {0, 1}k in a dual-Regev
ciphertext we construct the public key as a matrix A ∈ Zm×nq , which is statistically close to uniform but is
sampled together with a trapdoor τ (whose role will be explained below), and another uniformly sampled
matrix B ∈ Zk×nq . The encryption algorithm computes a the ciphertext as

(A · r + e0,B · r + q/2 ·m + e)

where r←$Znq is the encryption randomness and the vectors e0 and e are the encryption noises, where the
norm of both vectors is bounded by some B � q. The property of the trapdoor τ is that it allows to recover
r from A · r + e0. The (semantic) security of the scheme follows directly by definition of LWE. To decrypt,
therefore, one can first use the trapdoor τ to recover r from the first m elements of the ciphertext, and then
recompute the mask B · r and recover each individual bit by rounding to the closest multiple of q/2. Setting
the parameters appropriately, we can guarantee that the decryption is always successful. One important
property of this scheme is that the random coins r ∈ Znq are sufficient to recover the entire message and
furthermore the size of r is succinct (in particular independent of k).

In terms of homomorphism, the scheme is straightforwardly additively homomorphic. Furthermore, it
supports key switching from any scheme with almost-linear decryption as per [BDGM19].3 In particular it
is possible to take a (long) message encrypted under an FHE scheme such as GSW and convert it to an
encryption of the same message under packed dual-Regev, using precomputed key-switching parameters.4

As explained above, this scheme does not have dense ciphertexts. At this point we make two crucial
observations that will allow us to bypass this hurdle.

(1) In order to construct the obfuscator using the [BDGM20] approach, dense ciphertexts only need to enjoy
a very limited form of homomorphism, they only need to support a single addition with a non-dense
ciphertext.

This is essentially because the obfuscator has the following outline. It starts by considering the dense
ciphertext from the CRS (or oracle in the case of the original [BDGM20]), and homomorphically bootstraps
it into a non-dense FHE ciphertext by evaluating the decryption circuit. Let m be the (random) message that
is induced by the process. Then, the FHE encryption of m is processed in order to create a non-dense packed
encryption of m ⊕ TT, where TT is the truth table of the program to be obfuscated (or, more accurately,
a chunk of this truth table, partitioning into chunks is required in order to allow reusability of the keys).
Then a single homomorphic addition between the dense and non-dense ciphertext would imply a packed
encryption of the truth table. All of this can be performed by the evaluator of the obfuscated program, so
all that is needed is the decryption hint for this final ciphertext, that would allow to recover TT.

We note importantly, that in prior approaches (including the [GP20] blueprint) the aforementioned
bootstrapping creates a key cycle, since a packed ciphertext is bootstrapped into an FHE ciphertext, which
is afterwards key-switched into a packed ciphertext. However, we notice that it suffices to provide an

3This is done using the by-now-standard technique of encrypting powers-of-two of the elements of the secret key of the latter
scheme, so that it is possible to evaluate any inner product homomorphically.

4We not that the key switching parameters are quite long so it is required for our method that they are reusable.

5

encryption of the (succinct) randomness of the dense ciphertext in order to apply bootstrapping, thus
leading to a relaxed key-randomness circular assumption. Interestingly, this observation is not very useful
for actual dense ciphertexts (since finding the randomness would require using the key), however, our relaxed
notion of density described below will allow to apply it and thus relax the circularity notion as well.

(2) A notion of almost-everywhere density suffices. A ciphertext distribution is almost-everywhere dense
if it is dense except for a non-dense part whose length is independent of k (the message length).

The reason that this is sufficient is that the non-dense part of the ciphertext, which we refer to as the header,
can be generated by the obfuscator and provided to the evaluator as a part of the obfuscated program.
Since the header is short, and in particular the message length k can be selected to be much longer than the
header, the effect on the length of the obfuscated program will be minimal.

As hinted above, since the obfuscator generates the header, it in particular also samples the random-
ness for the final almost-everywhere dense ciphertext. This means that the obfuscator can generate the
bootstrapping parameters using this randomness without requiring a key cycle.

Dense Encryption Mode. With these observations in mind we describe an alternative encryption mode
(DenseEnc) for the packed variant of dual-Regev where the bulk of the ciphertext is dense. On input a
message m ∈ {0, 1}k, the encryption algorithm in dense mode computes the following ciphertext

(A · r + e0,B · r + q/2 ·m + u)

where r and e0 are sampled as before and u←$ [−q/4,+q/4]k. For convenience, we are going to split
the ciphertexts into two blocks: The header h0 ∈ Zmq and the message carrier (h1, . . . , hk) ∈ Zkq . Foremost,
observe that the decryption algorithm as described before still returns the correct message with probability 1,
since it recovers the same r from h0. Furthermore, note that (for a fixed header) all vectors (h1, . . . , hk) ∈ Zkq
are in the support of the encryption algorithm. Since k � m, most of the elements of the ciphertext in the
alternative decryption mode are dense.

One can verify that the aforementioned limited form of homomorphism indeed holds, namely that

dR.Enc(m) + dR.DenseEnc(m′) ∈ dR.DenseEnc(m0 ⊕m′).

This is the case since

(A · r + e0,B · r + q/2 ·m + e) + (A · r′ + e′0,B · r′ + q/2 ·m′ + u)

= (A · (r + r′) + e0 + e′0,B · (r + r′) + q/2 · (m⊕m′) + e + u)

= (A · r̃ + ẽ0,B · r̃ + q/2 · (m⊕m′) + ũ)

where ũ = e + u ∈ [−q/4,+q/4]k with all but negligible probability over the random choice of u, for an
appropriate choice of the parameters.

Doing Away with the Header. We notice that given our two observations above, the goal of the header
in the obfuscation scheme is quite minimal. The header is not needed for homomorphism, and is only needed
for the purpose of extracting the randomness r at decryption time. We then observe that decrypting packed
ciphertext is done in two contexts in the scheme. The first is when we bootstrap the almost-everywhere
dense ciphertext into an FHE ciphertext, and the other is when the evaluator of the obfuscated program
recovers TT from the final ciphertext. For the latter there is no need for a header since the decryption hint,
i.e. the respective r value, is provided within the obfuscated program. For the former we do not need a
header of a specific structure, but rather simply an encryption of r that allows bootstrapping the almost-
dense ciphertext. It therefore suffices to provide GSW.Enc(r) directly, which makes the header completely
redundant.

6

On the Assumption. Equipped with the newly developed packed version of dual-Regev we can follow
the [BDGM20, GP20] approach, with the aforementioned modifications, to construct the obfuscator. The
resulting construction can be shown secure against the assumption that the SRL security of GSW is retained
in the presence of a key cycle with the packed dual-Regev encryption scheme as presented above.

We then observe that it suffices to assume SRL security with respect to key-randomness cycles, rather
than key cycles. We note that this assumption is no-stronger than key-cycle SRL since given a key-cycle it
is possible to homomorphically generate a key-randomness cycle, but the converse is not known to be true.

Adding this to our observation about the redundancy of the header, the assumption we require is that
SRL security is retained in the presence of a key-randomness cycle between GSW and packed dual-Regev,
i.e.

(GSW.Enc(r), dR.Enc(skGSW; r)) .

Since dual-Regev is randomness recoverable, this assumption is (potentially) strictly weaker than SRL secu-
rity in the presence of a key-cycle.

1.3 Other Related Work

Subsequently to the posting of this manuscript online (but concurrently and independently) [GP20] updated
their manuscript to include a solution based on LWE in the place of DCR. They do not make the observations
that a relaxed notion of density suffices (and is preferable) and thus they explicitly construct an encryption
scheme with dense ciphertexts based on the (primal) Regev encryption scheme. The resulting scheme is more
involved and in particular requires the circular SRL security of GSW rather than the relaxed key-randomness
circularity notion.

Wee and Wichs [WW20], again concurrently, presented another instantiation of the [BDGM20] approach
which is arguably post-quantum secure. They rely on an indistinguishability assumption between two dis-
tributions and not directly on circular security. However, the underlying machinery developed shares many
similarities with our approach. Specifically, while we essentially rely on randomness that is embedded in
the CRS by interpreting it as an obliviously sampled ciphertext (which thus corresponds to one encrypted
with fresh randomness), their approach is to use a pseudorandom function to transform the CRS into a
randomizer for the output hint.

2 Preliminaries

We denote by λ ∈ N the security parameter. We say that a function negl is negligible if it vanishes faster
than any polynomial. Given a set S, we denote by s←$S the uniform sampling from S. We say that an
algorithm is PPT if it can be implemented by a probabilistic machine running in time poly(λ). We say
that two distributions (D0, D1) are computationally (statistically, resp.) indistinguishable if for all PPT
(unbounded, resp.) distinguishers, the probability to tell D0 an D1 apart is negligibly close to 1/2. Matrices
are denoted by M and vectors are denoted by v. We denote the infinity norm of a vector v by ‖v‖∞. We
recall the smudging lemma [AIK11,AJL+12].

Lemma 2.1 (Smudging) Let B1 = B1(λ) and B2 = B2(λ) be positive integers and let e1 ∈ [−B1, B1] be
a fixed integer. Let e2←$ [−B2, B2] chosen uniformly at random. Then the distribution of e2 is statistically
indistinguishable to that of e2 + e1 as long as B1/B2 = negl(λ).

2.1 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation (iO) from [GGH+13b].

Definition 2.2 (Indistinguishability Obfuscation) A PPT machine iO is an indistinguishability obfus-
cator for a circuit class {Cλ}λ∈N if the following conditions are satisfied:

(Functionality) For all λ ∈ N, all circuit Π ∈ Cλ, all inputs x it holds that: Π̃(x) = Π(x), where Π̃← iO(Π).

7

(Indistinguishability) For all λ ∈ N, all pairs of circuit (Π0,Π1) ∈ Cλ such that |Π0| = |Π1| and Π0(x) =
Π1(x) on all inputs x, it holds that the following distributions are computationally indistinguishable:

iO(Π0) ≈ iO(Π1).

XiO. We recall a theorem from Lin et al. [LPST16], that states that (assuming the hardness of the LWE
problem), constructing an obfuscator for circuits with logarithmically-many input bits suffices to build
general-purpose obfuscation.

Theorem 2.3 (XiO) Assuming sub-exponentially hard LWE, if there exists a sub-exponentially secure in-
distinguishability obfuscator (with pre-processing) for Plog/poly with non-trivial efficiency, then there exists
an indistinguishability obfuscator for P/poly with sub-exponential security.

Here Plog/poly denotes the class of polynomial-size circuits with inputs of length η = O(log(λ)) and by
non-trivial efficiency we mean that the size of the obfuscated circuit is bounded by poly(λ, |Π|) · 2η·(1−ε), for
some constant ε > 0. Note that the above theorem poses no restriction on the runtime of the obfuscator.
Furthermore, the theorem allows the obfuscator to access a large uniform random string (the pre-processing)
of size even larger than the truth table of the circuit.

2.2 Learning with Errors

We recall the definition of the learning with errors (LWE) problem [Reg05].

Definition 2.4 (Learning with Errors) The LWE problem is parametrized by a modulus q, positive in-
tegers (n,m) and an error distribution χ. The LWE problem is hard if the following distributions are
computationally indistinguishable:

(A,A · s + e) ≈ (A,u)

where A←$Zm×nq , s←$Znq , u←$Zmq , and e←$χm.

As shown in [Reg05, PRS17], for any sufficiently large modulus q the LWE problem where χ is a discrete
Gaussian distribution with parameter σ = αq ≥ 2

√
n (i.e. the distribution over Z where the probability

of x is proportional to e−π(|x|/σ)2), is at least as hard as approximating the shortest independent vector
problem (SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n lattices. We refer to α = σ/q as
the modulus-to-noise ratio, and by the above this quantity controls the hardness of the LWE instantiation.
Hereby, LWE with polynomial α is (presumably) harder than LWE with super-polynomial or sub-exponential
α. We can truncate the discrete Gaussian distribution χ to σ ·ω(

√
log(λ)) while only introducing a negligible

error. Consequently, we typically omit the actual distribution χ but only use the fact that it can be bounded
by a (small) value B.

2.3 Public-Key Encryption

We recall the definition of public key encryption in the following.

Definition 2.5 (Public-Key Encryption) A public-key encryption scheme consists of the following effi-
cient algorithms.

KeyGen(1λ): On input the security parameter 1λ, the key generation algorithm returns a key pair (sk, pk).

Enc(pk,m): On input a public key pk and a message m, the encryption algorithm returns a ciphertext c.

Dec(sk, c): On input the secret key sk and a ciphertext c, the decryption algorithm returns a message m.

8

Correctness and Semantic Security. We recall the standard notions of correctness and semantic secu-
rity [GM82] for public-key encryption.

Definition 2.6 (Correctness) A public-key encryption scheme (KeyGen,Enc,Dec) is correct if for all λ ∈
N, all messages m, all (sk, pk) in the support of KeyGen(1λ), and all c in the support of Enc(pk,m) it holds
that Dec(sk, c) = m.

Definition 2.7 (Semantic Security) A public-key encryption scheme (KeyGen,Enc,Dec) is semantically
secure if for all λ ∈ N, all pairs of message (m0,m1), it holds that the following distributions are computa-
tionally indistinguishable

(pk,Enc(pk,m0)) ≈ (pk,Enc(pk,m1))

where (sk, pk)←$KeyGen(1λ).

Homomorphic Encryption. We say that a public-key encryption scheme (KeyGen,Enc,Dec) is homo-
morphic for the circuit class {Cλ}λ∈N if there exist an efficient deterministic algorithm Eval such that for all
Π ∈ Cλ, all (sk, pk) in the support of KeyGen, all vectors of messages (m1, . . . ,mµ), all ciphertexts (c1, . . . , cµ)
in the support of (Enc(pk,m1), . . . ,Enc(pk,mµ)) it holds that

Dec(sk,Eval(pk,Π, (c1, . . . , cµ))) = Π(m1, . . . ,mµ).

Furthermore, we say that a scheme is fully-homomorphic if it is homomorphic for all polynomial-size circuits.

Circular Security. We say that two encryption schemes (KeyGen0,Enc0,Dec0) and (KeyGen1,Enc1,Dec1)
form a key cycle if the distinguisher is given a cross-encryption of the secret keys, i.e. Enc(pk1, sk0) and
Enc(pk0, sk1). We say that the scheme is 2-circular secure if semantic security is retained in the presence of
such a cycle.

Definition 2.8 (2-Circular Security) A pair of public-key encryption schemes (KeyGen0,Enc0,Dec0) and
(KeyGen1,Enc1,Dec1) is 2-circular secure if for all λ ∈ N, all pairs of message (m0,m1), it holds that the
following distributions are computationally indistinguishable

(pk0, pk1,Enc0(pk0, sk1),Enc1(pk1, sk0),Enc0(pk0,m0))
≈ (pk0, pk1,Enc0(pk0, sk1),Enc1(pk1, sk0),Enc0(pk0,m1))

where (sk0, pk0)←$KeyGen0(1λ) and (sk1, pk1)←$KeyGen1(1λ).

2.4 The GSW Fully-Homomorphic Encryption

In the following we briefly recall the encryption scheme by Gentry, Sahai, and Waters [GSW13] (henceforth,
GSW). We denote by n = n(λ) the lattice dimension and by q = q(λ) the modulus (which we assume for
simplicity to be even). We set m > n log(q) and d = d(λ) as a bound on the depth of the arithmetic circuit
to be evaluated.

KeyGen(1λ): Sample a uniform matrix A←$Zn×mq and a vector s←$χn. Set the public key to (A,b =

sTA + eT), where e←$χm. The secret key is set to (−s, 1).

Enc(pk,m): On input a message m ∈ {0, 1}, sample a uniform R←$ {0, 1}m×m and compute

C = (A,b) ·R +m ·G

where G = (1, 2, . . . , 2log(q))T ⊗ I(n+1) and I(n+1) ∈ {0, 1}(n+1)×(n+1) denotes the identity matrix.

9

Eval(pk,Π, (c1, . . . , cµ)): There exists a (deterministic) polynomial-time algorithm that allows one to com-

pute any d-bounded depth arithmetic circuit Π : {0, 1}n → {0, 1} homomorphically over a vector of
ciphertexts (c1, . . . , cµ). For details about this algorithm, we refer the reader to [GSW13]. For the

purpose of this work, the only relevant information is that the evaluated ciphertext cΠ ∈ Z(n+1)
q is an

(n + 1)-dimensional vector. For multiple bits of output, the resulting ciphertext is defined to be the
concatenation of the single-bit ciphertexts.

Dec(sk, c): We assue without loss of generality that the input ciphertext c ∈ Z(n+1)
q is the output of the

evaluation algorithm. Such a ciphertext defines a linear function `c such that

`c(sk) = q/2 ·m+ e

where |e| ≤ B̂ = (m+ 1)dmB. The message m is recovered by returning the most significant bit of the
output.

Note that the decryption routine of GSW consists of the application of a linear function, followed by a
rounding and we refer to this property as to almost-linear decryption. In a slight abuse of notation, we
sometimes write KeyGen(1λ; q) to denote the above key generation algorithm with a fixed modulus q.

Alternate Encryption. For convenience we also define a modified encryption algorithm, where the output
ciphertexts consists of a single column vector. An additional difference is that we sample the randomness
with norm B̃ = 2λ · B̂.

ColEnc(pk,m): On input a message m, sample a uniform r←$ [−B̃,+B̃]m and compute

c = (A,b) · r +m.

The multi-bit version of such an algorithm is defined accordingly to output the concatenation of independently
sampled ciphertexts. This algorithm is going instrumental for our scheme, although ciphertexts in this
form no longer support the homomorphi evaluation of arbitrary circuits. We now recall a useful Lemma
from [GP20].

Lemma 2.9 (GSW Smudging) Let B̃ = 2λ·B̂. For all λ ∈ N, for all (sk, pk) in the support of KeyGen(1λ),
for all messages (m1, . . . ,mµ), for all depth-d circuit (Π1, . . . ,Πτ), the following distributions are statistically
indistinguishable(

(c1, . . . , cµ), (r∗1, . . . , r
∗
τ),

Eval(pk,Π1, (c1, . . . , cµ)) + ColEnc(pk, 0; r∗1), . . . ,Eval(pk,Πτ , (c1, . . . , cµ)) + ColEnc(pk, 0; r∗τ)

)
≈
(

(c1, . . . , cµ), (r∗1 − rΠ,1, . . . , r
∗
τ − rΠ,τ),

ColEnc(pk,Π1(m1, . . . ,mµ); r∗1), . . . ,ColEnc(pk,Πτ (m1, . . . ,mµ); r∗τ)

)
where ci←$Enc(pk,mi), r∗i ←$ [−B̃,+B̃]m, and rΠ,i is the randomness of the i-th evaluated ciphertext
Eval(pk,Πi, (c1, . . . , cµ)).

Shielded Randomness Leakage. The notion of shielded randomness leakage (SRL) security [GP20] says
that the scheme is semantically secure even in the presence of an oracle that leaks some information about
the randomness for evaluated ciphertext. The circuit to be evaluated homomorphically are fixed ahead of
time (although they may depend on the challenge ciphertext) and the adversary is constrained to know the
output of the evaluation ahead of time. We present a formal definition in the following.

Definition 2.10 (SRL Security) A homomorphic encryption scheme (KeyGen,Enc,Eval,Dec) is SRL se-
cure if for all λ ∈ N, all pairs of message (m0,m1), all (α1, . . . , ατ), all circuits (Π1, . . . ,Πτ) such that

10

for all i = 1 . . . τ it holds that Πi(m0, ·) = Πi(m0, ·) = ατ , the following distributions are computationally
indistinguishable (

pk, c = Enc(pk,m0), c∗q , . . . , c
∗
τ , r
∗
1 − r1, . . . , r

∗
τ − rτ

)
≈
(
pk, c = Enc(pk,m1), c∗q , . . . , c

∗
τ , r
∗
1 − r1, . . . , r

∗
τ − rτ

)
where (sk, pk)←$KeyGen(1λ), r∗i ←$ [−B̃,+B̃], c∗i = ColEnc(0; r∗i), and ri is the randomness of the i-th
evaluated ciphertext Eval(pk,Πi(·, c∗i), c).

In [GP20], the authors showed that the GSW scheme satisfies the notion of SRL security if the LWE problem
is hard. For completeness, we recall the theorem statement in the following.

Theorem 2.11 (SRL Security of GSW) If the LWE assumption holds, then the GSW encryption scheme
satisfies the notion of SRL security.

If SRL security is retained in the presence of a key cycle, then we say that the scheme satisfies the notion
of 2-circular SRL security. Specifically, we define this notion as above, except that the challenge ciphertext
c encrypts mb‖s̃k and the distinguisher is additionally given Enc(p̃k, sk), where (s̃k, p̃k) is an independently
sampled key pair of a (possibly different) public-key encryption scheme.

3 Packed Encryption from LWE

In the following we describe a packed version of the dual-Regev encryption scheme [GPV08]. We denote by
n = n(λ) the lattice dimension, by q = q(λ) the modulus (which we assume for simplicity to be even), and
by k = k(λ) the expansion factor.

KeyGen(1λ, 1k): Sample a uniform k×n matrix B←$Zk×nq and a key pair of a regular public-key encryption

scheme (skPKE, pkPKE)←$PKE.KeyGen(1λ). The public key consists of (B, pkPKE) and the secret key is
set to skPKE.

Enc(pk,m): To encrypt a k-bit message m ∈ {0, 1}k, sample a uniform randomness vector r←$Znq a noise

vector e←$χk and return the ciphertext

c = (PKE.Enc(pkPKE, r),B · r + q/2 ·m + e) .

Dec(sk, c): Parse c as (cPKE, c1, . . . , ck) and recover the random coins r = PKE.Dec(skPKE, cPKE). Let bi
be the i-th row of B. For i = 1 . . . k, compute mi = MSB(ci − bi · r), where MSB returns the most
significant bit of the input integer. Output m = (m1, . . . ,mk).

Clearly, the scheme is perfectly correct since

(MSB(c1 − b1 · r), . . . ,MSB(ck − bk · r)) = (MSB(q/2 ·m1 + e1), . . . ,MSB(q/2 ·mk + ek))

= (MSB(q/2 ·m1), . . . ,MSB(q/2 ·mk))

= (m1, . . . ,mk)

= m.

Extended Encryption. It is not hard to see that the scheme presented above is (bounded) additively
homomorphic over Zkq . To lift the class of computable functions to all linear functions, we adopt the standard

trick of encrypting the message multiplied by all powers of two (1, 2, . . . , 2log(q)). For convenience, we define
the following augmented encryption algorithm.

11

ExtEnc(pk,m): On input an `-dimensional message m ∈ Z`q, define m(i,j) as the k-dimensional vector

(0, . . . , 0,mj , 0, . . . , 0)T that contains mj in the i-th position and 0 everywhere else. Define

M =


m(1,1) m(1,1) · 2 . . . 0k

0k 0k . . . 0k

...
...

. . .
...

0k 0k . . . m(k,`) · 2log(q)

 ∈ Zk×`·k·log(q)
q .

Sample a uniform randomness matrix R←$Zn×`·k·log(q)
q and a uniform noise matrix E←$χk×`·k·log(q).

Compute
C = B ·R + M + E

and return the ciphertext (PKE.Enc(pkPKE,R),C).

Decryption works, as before, by recovering R from the public-key encryption scheme and then decrypting
m component-wise.

Almost-Everywhere Dense Encryption. For convenience, we also define an alternative encryption
algorithm in the following. Note that the encryption algorithm does not take as input any message, instead
it encrypts a uniform k-bit binary vector.

DenseEnc(pk): Sample a uniform randomness vector r←$Znq and return the ciphertext

c = (cPKE, c1, . . . , ck) = (PKE.Enc(pkPKE, r),B · r + u) .

where u←$Zkq .

We highlight two facts about this algorithm that are going to be important for our later construction: (i)
The decryption algorithm works for both Enc and DenseEnc algorithms, where the plaintext of DenseEnc
corresponds to (MSB(u1), . . . ,MSB(uk)). In fact, the scheme satisfies perfect correctness in both cases. (ii)
The domain of the elements (c1, . . . , ck) is dense, i.e. the support of the scheme spans the entire vector
space Zkq . Since the element cPKE is small (i.e. independent of k) for an appropriate choice of the public-key
encryption scheme, we refer to such a property as almost-everywhere density.

3.1 Analysis

Here we argue that our scheme as described above satisfies a few properties of interest and we discuss some
suitable instantiations for the underlying building blocks.

Semantic Security. First we argue that the scheme satisfies a strong form of semantic security, i.e. the
honestly computed ciphertexts are computationally indistinguishable from uniform vectors in Zkq . Semantic
security for the extended encryption ExtEnc and the dense encryption DenseEnc follows along the same lines.

Theorem 3.1 (Semantic Security) If (PKE.KeyGen,PKE.Enc,PKE.Dec) is semantically secure and the
LWE assumption holds, then for all λ ∈ N and all messages m it holds that the following distributions are
computationally indistinguishable

(pk,Enc(pk,m)) ≈ (pk,PKE.Enc(pkPKE, z),u).

where (sk, pk)←$KeyGen(1λ, 1k), z←$Znq , and u←$Zkq .

Proof: The security of the scheme follows routinely by an invocation of semantic security of the public-key
encryption scheme and an invocation of the LWE assumption. �

12

Circuit Privacy. We require that the underlying public-key encryption scheme supports the homomorphic
evaluation of linear functions, however we pose no compactness requirements for the evaluated ciphertexts.
Instead, we require that the scheme satisfies the following notion of circuit privacy.

Definition 3.2 (Circuit Privacy) A public-key encryption scheme (PKE.KeyGen,PKE.Enc,PKE.Dec) is
circuit-private for the circuit class {Cλ}λ∈N if for all Π ∈ Cλ, all (skPKE, pkPKE) in the support of PKE.KeyGen,
and all messages m, it holds that the following distributions are statistically indistinguishable

(pk,PKE.Enc(pkPKE,Π(m))) ≈ (pk,PKE.Eval(pkPKE,Π,PKE.Enc(pkPKE,m))).

Many fully-homomorphic encryption schemes are known to satisfy such a notion (see e.g. [BdMW16,DS16,
OPP14]). As we do not require compactness, we can even instantiate this building block using a two-
round oblivious transfer with statistical sender privacy [PVW08,BD18,DGI+19,BDGM19] and information-
theoretic garbled circuits [Kil88,AIK04, IP07].

4 Constructing XiO

In the following we present the construction of XiO from the GSW scheme (GSW.KeyGen,GSW.Enc,GSW.Eval,
GSW.Dec) and the packed version of the dual-Regev encryption (dR.KeyGen, dR.Enc, dR.Eval, dR.Dec) as de-
scribed in Section 3. The construction and the analysis is largely unchanged from [GP20] (which in turn
is based on the blueprint of [BDGM20]), except that we include some extra elements in the XiO scheme to
account for the fact that some parts of the dual-Regev ciphertext are not dense.

4.1 Construction

The scheme assumes a long uniform string that is, for convenience, split in two chunks:

• A sequence of randomization vectors (r∗1, . . . , r
∗
η−log(k)) for the GSW scheme GSW.PubCoin, where each

ri ∈ [−B̃,+B̃]m·k.

• A sequence of dense ciphertexts ((h1,1, . . . , h1,k), . . . , (hη−log(k),1, . . . , hη−log(k),k)) for packed dual-

Regev scheme dR.PubCoin, where each (hi,1, . . . , hi,k) ∈ Zkq .

On input the security parameter 1λ and the circuit Π : {0, 1}η → {0, 1}, the obfuscator proceeds as follows.

Setting the Public Keys: Sample a dual-Regev key pair (s̄k, p̄k)←$ dR.KeyGen(1λ, 1k) and GSW key pair

(sk, pk)←$GSW.KeyGen(1λ; q), where q is the modulus defined by the dual-Regev scheme. Compute a
GSW encryption cΠ ← GSWEnc(pk,Π) of the binary representation of the circuit Π.

Compute a Key Cycle: Compute a GSW encryption of the dual-Regev secret key cs̄k = GSW.Enc(pk, s̄k)
and a dual-Regev extended encryption of the GSW secret key(

c̄sk, C̄sk

)
= dR.ExtEnc(p̄k, sk; S).

where sk ∈ Zn+1
q and S←$Zn×log(q)·k·(n+1)

q .

Decryption Hints: For all indices i ∈ {0, 1}η−log(k), do the following.

Evaluate the Circuit: Let Φi : {0, 1}|Π| → {0, 1}k be the universal circuit that, on input a circuit
description Π, returns the i-th block (where each block consists of k bits) of the corresponding
truth table. Compute

ci ← GSW.Eval(pk,Φi, cΠ).

Compute the Encryption Header: Sample a uniform ri←$Znq and set hi,0 = PKE.Enc(pkPKE, ri),
where pkPKE is the public-key encryption scheme defined by the key generation of dual-Regev.

13

Compute the Low-Order Bits: Parse the i-th block of dR.PubCoin as

(hi,1, . . . , hi,k) = B · ri + (ui,1, . . . , ui,k) ∈ Zkq

for some (ui,1, . . . , ui,k) ∈ Zkq . Let Ψi : {0, 1}λ → {0, 1}k be circuit that, on input the dual-Regev
secret key, computes the decryption of (hi,0, hi,1, . . . , hi,k), i.e.

Ψi(s̄k) = dR.Dec(s̄k, (hi,0, hi,1, . . . , hi,k)).

Compute homomorphically the k-bit ciphertext ci,MSB = GSW.Eval(pk,Ψi, cs̄k).

Rerandomize the Ciphertext: Parse the i-th block of GSW.PubCoin as r∗i ∈ [−B̃,+B̃]m·k and
compute

c′i,MSB = ci,MSB + GSW.ColEnc(pk, 0k; r∗i).

Proxy Re-Encrypt: Define di as the GSW ciphertext resulting from the homomorphic sum of c′i,MSB

and ci, i.e. di = c′i,MSB+ci. Observe that di is a k-bit ciphertext and let `i,j be the linear function
associated with the decryption of the j-th bit. Define `i = (`i,1, . . . , `i,k) and compute

c̄i = C̄sk · Bit(`i) + (hi,1, . . . , hi,k) ∈ Zkq

where the function Bit : Zk·(n+1)
q → {0, 1}log(q)·k·(n+1) is the bit decomposition operator.

Release Hint: Compute the i-th decryption hint as

ρi = S · Bit(`i) + ri ∈ Znq .

Output: The obfuscated circuit consists of the public keys (pk, p̄k), the key cycle (C̄sk, cs̄k), the GSW
encryption of the circuit cΠ, the encryption headers (h1, . . . , hη−log(k)), and the decryption hints
(ρ1, . . . ,ρη−log(k)).

To evaluate the obfuscated circuit on input x, let i be the index of the block of the truth table of Π that
contains Π(x). The evaluator computes c̄i as specified above (note that all the operations are public, given
the information included in the obfuscated circuit) and recovers Π(i) (the i-th block of the truth table of Π)
by computing

Π(i) = MSB(ci −B · ρi)

where MSB returns the most significant bit of each component of the input vector.

Correctness. To see why the evaluation algorithm is correct, recall that

c̄i = C̄sk · Bit(`i) + (hi,1, . . . , hi,k).

First observe that (hi,0, hi,1, . . . , hi,k) is a ciphertext in the support of dR.DenseEnc(p̄k), and in particular

(hi,0, hi,1, . . . , hi,k) = (PKE.Enc(pkPKE, ri),B · ri + (ui,1, . . . , ui,k))

= (PKE.Enc(pkPKE, ri),B · ri + ui) .

Furthermore, observe that

di = c′i,MSB + ci

= c′i,MSB + GSW.ColEnc(pk,Π(i))

= GSW.ColEnc(pk, (MSB(u1), . . . ,MSB(uk))) + GSW.ColEnc(pk,Π(i))

= GSW.ColEnc(pk, (MSB(u1), . . . ,MSB(uk))⊕Π(i))

= GSW.ColEnc(pk, (MSB(u1)⊕Π
(i)
1 , . . . ,MSB(uk)⊕Π

(i)
k))

14

by the evaluation correctness of GSW. By the almost-linear decryption of GSW, it follows that

C̄sk · Bit(`i) = B · s̃i + ξi + ζi + q/2 ·
(
MSB(u1)⊕Π

(i)
1 , . . . ,MSB(uk)⊕Π

(i)
k

)
where ξi is the decryption noise of the packed dual-Regev scheme (i.e. the subset sum of the noise terms of
C̄sk) and ζi is the decryption noise of the GSW ciphertext. It follows that ‖ξi‖∞ ≤ B · log(q) · k · (n + 1)

and, by Lemma 2.1, ‖ζi‖∞ ≤ B̃ with all but negligible probability. Note that, by linearity we have that
s̃i = S · Bit(`i). Consequently, it holds that

c̄i = B · s̃i + ξi + ζi + q/2 ·
(
MSB(u1)⊕Π

(i)
1 , . . . ,MSB(uk)⊕Π

(i)
k

)
+ B · ri + ui

= B · (s̃i + ri) + ξi + ζi + q/2 ·
(
MSB(u1)⊕Π

(i)
1 , . . . ,MSB(uk)⊕Π

(i)
k

)
+ ui

= B · (s̃i + ri) + q/2 ·Π(i) + vi

= B · ρi + q/2 ·Π(i) + vi

where vi = ui+q/2 ·MSB(ui)+ξi+ζi and ‖vi‖∞ < q/4 with all but negligible probability, over the random
choice of ui. This is because di is statistically close to a fresh GSW encryption of (MSB(u1), . . . ,MSB(uk))⊕
Π(i), by Lemma 2.9. Therefore we have that

MSB (ci −B · ρi) = MSB
(
B · ρi + q/2 ·Π(i) + vi −B · ρi

)
= MSB

(
q/2 ·Π(i) + vi

)
= MSB

(
q/2 ·Π(i)

)
= Π(i)

with the same probability.

4.2 Analysis

In the following we show that our XiO scheme satisfies the notion of security for indistinguishability obfus-
cation.

Theorem 4.1 (XiO Security) If the GSW scheme (GSW.KeyGen,GSW.Enc,GSW.Eval,GSW.Dec) and the
packed dual-Regev scheme (dR.KeyGen, dR.Enc, dR.Eval, dR.Dec) are 2-circular SRL secure, then the XiO
scheme as described above is secure.

Proof: We prove the scheme via a series of hybrid experiments. The proof follows closely the argument
of [GP20] and it is reported here for completeness.

• Hybrid H0: This is the original obfuscation of the circuit Π0.

• Hybrid H1: This hybrid is identical to the previous one, except that for all i ∈ {0, 1}η−log(k) we sample
c′i,MSB as

c′i,MSB = GSW.ColEnc(pk, (MSB(ui,1), . . . ,MSB(ui,k)); r∗i)

where r∗i ←$ [−B̃,+B̃]m·k. Let rΨ,i be the random coins of ci,MSB (as computed in the original protocol).
We additionally set the i-the block of the GSW.PubCoin to r∗i − rΨ,i. Statistical indistinguishability
with respect to the previous hybrid follows from an invocation of Lemma 2.9.

15

• Hybrid H2: This hybrid is identical to the previous one, except that for all i ∈ {0, 1}η−log(k) we set

(hi,1, . . . , hi,k) = B · ri + (ui,1, . . . , ui,k)

where (ui,1, . . . , ui,k)←$Zkq . The only difference with respect to the previous hybrid is that the obfus-
cator knows the values (ui,1, . . . , ui,k) ahead of time. However, the two distributions are identical to
the eyes of the distinguisher and therefore the change here is only syntactical.

• Hybrid H3: In this hybrid we generate, for all i ∈ {0, 1}η−log(k), c̄i as follows

c̄i = B · ti + ξi + ζi + q/2 ·
(
MSB(u1)⊕Π

(i)
1 , . . . ,MSB(uk)⊕Π

(i)
k

)
+ ui

where ti←$Znq . Here ξi and ζi denote the decryption noises of C̄sk and di, respectively. Furthermore,

we set (hi,1, . . . , hi,k) = c̄i − C̄sk · Bit(`i) and hi,0 = PKE.Enc(pkPKE, ti − S · Bit(`i)). Note that c′i,MSB

is fixed (and in particular is independent of hi,0) and thus the above variables are always well defined.
In fact, observe that

(hi,1, . . . , hi,k) = c̄i − C̄sk · Bit(`i)

= c̄i −B · (S · Bit(`i))− ξi − ζi − q/2 ·
(
MSB(u1)⊕Π

(i)
1 , . . . ,MSB(uk)⊕Π

(i)
k

)
= B · (ti − S · Bit(`i)) + ui

which is exactly the same distribution is in the previous hybrid. Furthermore, note that we now have
ρi = ti. Thus the change introduced here is only syntactical.

• Hybrid H4: In this hybrid we generate, for all i ∈ {0, 1}η−log(k), c̄i as a fresh encryption of Π(i), i.e.

c̄i = B · ti + q/2 ·Π(i) + wi

where ti←$Znq and wi←$ [−q/4,+q/4]k. Note that we can bound ‖ξi‖∞ ≤ B · log(q) · k · (n + 1).

Furthermore, we have that ‖ζi‖∞ ≤ B̃ with all but negligible probability over the random choice of
r∗i , by Lemma 2.1. Statistical indistinguishability follows from another application of Lemma 2.1.

• Hybrid H5: Here we define, for all i ∈ {0, 1}η−log(k), the circuit Γi : Zn×(n+1)·k·log(q)
q → Znq as the

following circuit
Γi(X) = ti −X · Bit(`i).

Then we set hi,0 = PKE.Eval(pkPKE,Γi, c̄sk). To see why the hybrids are statistically close, recall that
c̄sk = PKE.Enc(pkPKE,S), where S are the random coins used in the encryption of sk. Then

PKE.Eval(pkPKE,Γi,PKE.Enc(pkPKE,S)) ≈ PKE.Enc(pkPKE, ti − S · Bit(`i))

by the statistical circuit privacy of the public-key encryption scheme. Jumping ahead to our modified
scheme, note that the same hybrid step would have succeeded (with the same argument) if we were
given a GSW encryption of S.

• Hybrid H6: In this hybrid we compute cΠ as an encryption of Π1 instead of Π0. Note that we no longer
use the secret key of either of the encryption schemes to obfuscate the circuit, besides the encrypted key
cycle. The random coins GSW.PubCoin (which we set to r∗i − rΨ,i) can be modelled as an SRL leakage
and therefore security follows from a standard reduction to the 2-circular SRL security of GSW and
packed dual-Regev: The experiment is defined with respect to the set of circuits (Ψ1, . . . ,Ψη−log(k))
(as defined in H4) and the reduction uses the extra ciphertexts (c∗1, . . . , c

∗
η−log(k)) to compute c′i,MSB

to be c∗i + (0n,MSB(ui,1), . . . , 0n,MSB(ui,k)). The rest of the information is already given by the SRL
experiment or recomputed as in H4.

• Hybrids H7 . . .H11: In this series of hybrids we undo all changes that we did in H5 . . .H1. The
statistical indistinguishability follows by the same arguments as before. Note that H11 is the original
obfuscation of Π1. This concludes our proof.

�

16

4.3 Parameters

The analysis of our scheme sets two constraints on the noise growth of the encryption schemes. The first
application of the smudging Lemma requires that the noise bound B̃ is exponentially larger than the noise
bound on evaluated GSW ciphertexts B̂, i.e. (1) B̃ ≥ 2λ · B̂. The second application requires that (2)
q/4 ≥ 2λ · B̃ and (3) q/4 ≥ 2λ ·B · log(q) · k · (n+ 1), to ensure that the term ui (minus its most significant
bit) properly floods the noise terms of the GSW and dual-Regev ciphertexts. Note that, for an appropriate
choice of parameters of the GSW scheme, condition (3) is already implied by conditions (1) and (2) and
therefore all we need ensures is that these two conditions are satisfiable. It is not hard to see that the
above pair of constraints can be satisfied by setting the modulo-to-noise ratio of the LWE assumption to be
super-polynomial.

To make the XiO scheme compressing, we set k = 2η/4. We analyze the size of each component of the
obfuscated circuit in the following:

• The size of the public keys (pk, p̄k) is linear in k and thus can be bounded by 2η/4 · poly(λ).

• The size of the key cycle (C̄sk, cs̄k) can be bounded by k2 · poly(λ) = 2η/2 · poly(λ).

• The GSW encryption of the circuit cΠ is of size |Π| · poly(λ).

• The size of an encryption header hi is poly(λ) (and in particular independent of k by the almost-
everywhere density of dual-Regev) and the size of each decryption hint ρi is also poly (λ) (by the
randomness succinctness of dual-Regev). It follows that the total size of the encryption headers and
the decryption hints can be bounded by 2η−log(k) · poly(λ) = 23η/4 · poly(λ).

The summation of the above terms is sublinear in poly (|Π|, λ) · 2η(1−ε) (for ε > 0) and therefore the
XiO scheme satisfies non-trivial efficiency. Note that we omitted the public parameters GSW.PubCoin
and dR.PubCoin from the analysis since they are uniformly at random and thus can be computed in the
pre-processing stage of the obfuscator.

4.4 Randomness-Key Circularity

As it is described above, our scheme assumes the 2-circular SRL security of GSW and the variant of packed
dual-Regev (presented in Section 3). While SRL security can be based on the plain LWE assumption for
GSW alone, we conjecture that it is retained also in the presence of a 2-key cycle.

It is instructive to discuss why a key cycle is needed: On the one hand we need to key-switch the
GSW encryption into a packed dual-Regev ciphertext, which has succinct randomness and therefore short
decryption hints. This requires us to encrypt the GSW secret key under the dual-Regev encryption. On
the other hand, we also need to recover the most significant bits of the vector ui (component-wise) to
make sure that the smudging noise does not interfere with the correctness of the scheme. This is done
by parsing (hi,0, hi,1, . . . , hi,k) as a dense ciphertext of packed dual-Regev and computing the decryption
homomorphically (thus the need to encrypt the dual-Regev secret key under GSW).

We observe that we can slightly tweak the XiO scheme to weaken the circularity assumption. Recall
that the packed dual-Regev decryption works by decrypting the randomness ri from the term hi,0 and uses
it to recover the message. Our idea is to bypass the first step by simply including in the obfuscated circuit
a GSW encryption of the randomnesses (r1, . . . , rη−log(q)). With this modification we can omit from the
obfuscated circuit both the GSW encryption of the secret key GSW.Enc(pk, s̄k) and the encryption headers
(h1,0, . . . , hη−log(q),0). However, we need to add a GSW encryption of S (the randomness used to compute
C̄sk) in order to simulate the GSW encryption of ri in the proof. Thus, the size of the obfuscated circuit
is (asymptotically) identical. The security argument follows along the same lines of what already shown,
except that the computational step boils down to a randomness-key circularity assumption. More precisely,
we assume that SRL security holds in the presence of the following cycle:

(GSW.Enc(pk,S) , C̄sk)

17

where (c̄sk, C̄sk) = dR.ExtEnc(p̄k, sk; S). We stress that such an assumption is strictly weaker than assuming
SRL security of a 2-key cycle, since we could have used the homomorphism of GSW and the randomness
recoverability of dual-Regev to compute a GSW encryption of S homomorphically.

References

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New methods for
bootstrapping and instantiation. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2019, Part I, volume 11476 of Lecture Notes in Computer Science,
pages 191–225, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg, Germany.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In 45th Annual
Symposium on Foundations of Computer Science, pages 166–175, Rome, Italy, October 17–19,
2004. IEEE Computer Society Press.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits. In
Rafail Ostrovsky, editor, 52nd Annual Symposium on Foundations of Computer Science, pages
120–129, Palm Springs, CA, USA, October 22–25, 2011. IEEE Computer Society Press.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and
Daniel Wichs. Multiparty computation with low communication, computation and interaction
via threshold FHE. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptol-
ogy – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 483–501,
Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indistinguisha-
bility obfuscation without multilinear maps: New paradigms via low degree weak pseudoran-
domness and security amplification. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer
Science, pages 284–332, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg,
Germany.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and indis-
tinguishability obfuscation from degree-5 multilinear maps. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part I, volume 10210
of Lecture Notes in Computer Science, pages 152–181, Paris, France, April 30 – May 4, 2017.
Springer, Heidelberg, Germany.

[BD18] Zvika Brakerski and Nico Döttling. Two-message statistically sender-private OT from LWE.
In Amos Beimel and Stefan Dziembowski, editors, TCC 2018: 16th Theory of Cryptography
Conference, Part II, volume 11240 of Lecture Notes in Computer Science, pages 370–390, Panaji,
India, November 11–14, 2018. Springer, Heidelberg, Germany.

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear decryp-
tion: Rate-1 fully-homomorphic encryption and time-lock puzzles. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019: 17th Theory of Cryptography Conference, Part II, volume 11892 of
Lecture Notes in Computer Science, pages 407–437, Nuremberg, Germany, December 1–5, 2019.
Springer, Heidelberg, Germany.

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate iO from homo-
morphic encryption schemes. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptol-
ogy – EUROCRYPT 2020, Part I, volume 12105 of Lecture Notes in Computer Science, pages
79–109, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany.

18

[BdMW16] Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. FHE circuit privacy al-
most for free. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Science, pages 62–89,
Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor, Advances
in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 1–18,
Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany.

[BGMZ18] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of GGH15: Provable
security against zeroizing attacks. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018:
16th Theory of Cryptography Conference, Part II, volume 11240 of Lecture Notes in Computer
Science, pages 544–574, Panaji, India, November 11–14, 2018. Springer, Heidelberg, Germany.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more
from indistinguishability obfuscation. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science,
pages 480–499, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[CGH17] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching program
obfuscators. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
– EUROCRYPT 2017, Part III, volume 10212 of Lecture Notes in Computer Science, pages
278–307, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanal-
ysis of the multilinear map over the integers. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in Com-
puter Science, pages 3–12, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps
over the integers. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science, pages 476–493,
Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branching
programs: Proofs, attacks, and candidates. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in
Computer Science, pages 577–607, Santa Barbara, CA, USA, August 19–23, 2018. Springer,
Heidelberg, Germany.

[DGG+18] Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukherjee. Obfuscation
from low noise multilinear maps. In Debrup Chakraborty and Tetsu Iwata, editors, Progress in
Cryptology - INDOCRYPT 2018: 19th International Conference in Cryptology in India, volume
11356 of Lecture Notes in Computer Science, pages 329–352, New Delhi, India, December 9–12,
2018. Springer, Heidelberg, Germany.

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky.
Trapdoor hash functions and their applications. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes
in Computer Science, pages 3–32, Santa Barbara, CA, USA, August 18–22, 2019. Springer,
Heidelberg, Germany.

[DJ01] Ivan Damg̊ard and Mats Jurik. A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In Kwangjo Kim, editor, PKC 2001: 4th International

19

Workshop on Theory and Practice in Public Key Cryptography, volume 1992 of Lecture Notes in
Computer Science, pages 119–136, Cheju Island, South Korea, February 13–15, 2001. Springer,
Heidelberg, Germany.

[DS16] Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In Marc Fischlin and Jean-
Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part I, volume 9665 of
Lecture Notes in Computer Science, pages 294–310, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–178, Bethesda, MD,
USA, May 31 – June 2, 2009. ACM Press.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lat-
tices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EURO-
CRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 1–17, Athens, Greece,
May 26–30, 2013. Springer, Heidelberg, Germany.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual Symposium on Foundations of Computer Science, pages 40–49, Berkeley, CA, USA,
October 26–29, 2013. IEEE Computer Society Press.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices.
In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of Cryptography
Conference, Part II, volume 9015 of Lecture Notes in Computer Science, pages 498–527, Warsaw,
Poland, March 23–25, 2015. Springer, Heidelberg, Germany.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC
from indistinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014: 11th Theory of
Cryptography Conference, volume 8349 of Lecture Notes in Computer Science, pages 74–94, San
Diego, CA, USA, February 24–26, 2014. Springer, Heidelberg, Germany.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker keep-
ing secret all partial information. In 14th Annual ACM Symposium on Theory of Computing,
pages 365–377, San Francisco, CA, USA, May 5–7, 1982. ACM Press.

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and Mark
Zhandry. Secure obfuscation in a weak multilinear map model. In Martin Hirt and Adam D.
Smith, editors, TCC 2016-B: 14th Theory of Cryptography Conference, Part II, volume 9986 of
Lecture Notes in Computer Science, pages 241–268, Beijing, China, October 31 – November 3,
2016. Springer, Heidelberg, Germany.

[GP20] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. Cryptology
ePrint Archive, Report 2020/1010, 2020.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th Annual
ACM Symposium on Theory of Computing, pages 197–206, Victoria, BC, Canada, May 17–20,
2008. ACM Press.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In Salil P. Vadhan, edi-
tor, TCC 2007: 4th Theory of Cryptography Conference, volume 4392 of Lecture Notes in Com-
puter Science, pages 194–213, Amsterdam, The Netherlands, February 21–24, 2007. Springer,
Heidelberg, Germany.

20

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes
in Computer Science, pages 75–92, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Heidelberg, Germany.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In Tatsuaki Okamoto, editor, Advances
in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages
443–457, Kyoto, Japan, December 3–7, 2000. Springer, Heidelberg, Germany.

[HJ16] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part I, volume 9665 of Lec-
ture Notes in Computer Science, pages 537–565, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In Salil P.
Vadhan, editor, TCC 2007: 4th Theory of Cryptography Conference, volume 4392 of Lecture
Notes in Computer Science, pages 575–594, Amsterdam, The Netherlands, February 21–24,
2007. Springer, Heidelberg, Germany.

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness of constant-
degree expanding polynomials overa R to build iO. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2019, Part I, volume 11476 of Lecture Notes in Com-
puter Science, pages 251–281, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg,
Germany.

[JLS20] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. Cryptology ePrint Archive, Report 2020/1003, 2020.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th Annual ACM Symposium on
Theory of Computing, pages 20–31, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes. In
Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016,
Part I, volume 9665 of Lecture Notes in Computer Science, pages 28–57, Vienna, Austria,
May 8–12, 2016. Springer, Heidelberg, Germany.

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs.
In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017,
Part I, volume 10401 of Lecture Notes in Computer Science, pages 599–629, Santa Barbara,
CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation with
non-trivial efficiency. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin
Yang, editors, PKC 2016: 19th International Conference on Theory and Practice of Public
Key Cryptography, Part II, volume 9615 of Lecture Notes in Computer Science, pages 447–462,
Taipei, Taiwan, March 6–9, 2016. Springer, Heidelberg, Germany.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages 630–660,
Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like assump-
tions on constant-degree graded encodings. In Irit Dinur, editor, 57th Annual Symposium on
Foundations of Computer Science, pages 11–20, New Brunswick, NJ, USA, October 9–11, 2016.
IEEE Computer Society Press.

21

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps: Crypt-
analysis of indistinguishability obfuscation over GGH13. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture Notes
in Computer Science, pages 629–658, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Heidelberg, Germany.

[MZ18] Fermi Ma and Mark Zhandry. The MMap strikes back: Obfuscation and new multilinear
maps immune to CLT13 zeroizing attacks. In Amos Beimel and Stefan Dziembowski, editors,
TCC 2018: 16th Theory of Cryptography Conference, Part II, volume 11240 of Lecture Notes in
Computer Science, pages 513–543, Panaji, India, November 11–14, 2018. Springer, Heidelberg,
Germany.

[OPP14] Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. Maliciously circuit-
private FHE. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science, pages 536–553,
Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[PRS17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of ring-LWE
for any ring and modulus. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, 49th
Annual ACM Symposium on Theory of Computing, pages 461–473, Montreal, QC, Canada,
June 19–23, 2017. ACM Press.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-
posable oblivious transfer. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008,
volume 5157 of Lecture Notes in Computer Science, pages 554–571, Santa Barbara, CA, USA,
August 17–21, 2008. Springer, Heidelberg, Germany.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of
Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on Theory of Computing,
pages 475–484, New York, NY, USA, May 31 – June 3, 2014. ACM Press.

[WW20] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious lwe sampling. Cryptology
ePrint Archive, Report 2020/1042, 2020.

22

Indistinguishability Obfuscation from Circular Security

Romain Gay*

IBM Zurich
romain.rgay@gmail.com

Rafael Pass�

Cornell Tech
rafael@cs.cornell.edu

October 26, 2020

Abstract

We show the existence of indistinguishability obfuscators (iO) for general circuits assuming
subexponential security of:

(a) the Learning with Error (LWE) assumption (with subexponential modulus-to-noise ratio);

(b) a circular security conjecture regarding the Gentry-Sahai-Water’s (GSW) encryption scheme.

The circular security conjecture states that a notion of leakage-resilient security (that we prove is
satisfied by GSW assuming LWE) is retained in the presence of an encryption of the secret key.

Our work thus places iO on qualitatively similar assumptions as unlevelled FHE, for which
known constructions also rely on a circular security conjecture.

*Work done in part while at Cornell Tech
�Supported in part by NSF Award SATC-1704788, NSF Award RI-1703846, AFOSR Award FA9550-18-1-0267,

DARPA SIEVE award HR00110C0086, and a JP Morgan Faculty Award. This research is based upon work supported
in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity
(IARPA), via 2019-19-020700006. The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the
U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.

1

1 Introduction

The goal of program obfuscation is to “scramble” a computer program, hiding its implementation
details (making it hard to “reverse-engineer”), while preserving its functionality (i.e its input/output
behavior). In recent years, the notion of indistinguishability obfuscation (iO) [BGI+01, GGH+13b]
has emerged as the central notion of obfuscation in the cryptographic literature: roughly speaking,
this notion requires that obfuscations iO(Π1), iO(Π2) of any two functionally equivalent circuits Π1

and Π2 (i.e. whose outputs agree on all inputs) from some class C (of circuits of some bounded size)
are computationally indistinguishable.

On the one hand, this notion of obfuscation is strong enough for a plethora of amazing applications
(see e.g. [SW14, BCP14, BZ14, GGHR14, KNY14, KMN+14, BGL+15, CHJV14, KLW15, CLP15,
BPR15, BPW16, BP15]). On the other hand, it may also plausibly exist, whereas stronger notion of
obfuscations have run into strong impossibility results, even in idealized models (see e.g. [BGI+01,
GK05, CKP15, Ps16, MMN15, LPST16]). Since the breakthrough of Garg, Gentry, Halevi, Raykova,
Sahai and Waters [GGH+13b] that presented the first iO candidate, there has been an intensive
effort toward obtaining a construction of iO based on some form of well-studied/nice assumptions.
The original work [GGH+13b] provided a candidate construction based on high-degree multilinear
maps (MLMs) [GGH13a, CLT13, GGH15, CLT15]; there was no proof of security based on an
intractability assumption. [PST14] provided the first construction with a reduction-based proof of
security, based on a strong notion of security for MLMs, similar to a sort of “Uber assumption”.
[GLSW14] provided a construction based on a more concrete assumption relying on composite-order
MLMs. Unfortunately, both assumptions have been broken for specific candidate constructions of
MLMs [CHL+15, MF15].

iO from FE or XiO. Subsequently, several works have been constructing iO from seemingly
weaker primitives, such as Functional Encryption (FE) [AJ15, BV15] or XiO [LPST16], while only
using standard assumptions, such as Learning with Error (LWE)1. For both constructions, we actually
need to rely on subexponentially-secure constructions of either FE or XiO, as well as subexponential
security of LWE. Let us recall the notion of XiO as it will be useful to us: roughly speaking, an XiO
is an iO with a very weak “exponential” efficiency requirement: the obfuscator is allowed to run in
polynomial time in the size of the truth table of the function to be obfuscated, and it is only required
that its outputs a program that “slightly” compresses the truth table (technically, it is sublinear in
its size).

A breakthrough result by Lin [Lin16] showed how to obtain iO from constant-degree MLMs (plus
standard assumptions), overcoming the black-box barriers in [Ps16, MMN15]. Her construction
relies on the connection between FE and iO. Following this result, a sequence of works (see e.g.
[LV16, Lin17, LT17, AJKS18, JS18, JLMS19, AJL+19, GJLS20]) reduced the assumptions and the
degree of the MLM — all the way down to 2-linear maps a.k.a. pairings— relying on certain types of
low-degree pseudorandom generators (PRGs) to build FE. This culminated in the work of [GJLS20],
whose security rely on the LWE assumption with binary errors in the presence of some PRG leakage,
which despite being quite elegant, is new to their work, and as such, has not been significantly
crypt-analyzed. Another line of work [Agr19, AP20] replace the use of 2-linear maps used by the
aforementioned works by a noisy linear FE for inner products. While being plausibly post-quantum,
these constructions are heuristic and do not provide a security reduction to a simple assumption.

A recent work by Brakerski et al [BDGM20a] presents a new type of candidate construction

1Note that we are omitting some works that build iO without going through FE or XiO, such as [GJK18] that
gives a direct heuristic construction of iO from tensor products, or [BIJ+20] that describes a candidate from Affine
Determinant Programs. None of these provide a security proof.

2

of XiO by combining a fully-homomorphic encryption (FHE) and a linear-hommorphic encryption
(LHE) with certain nice properties (which can be instantiated by the Damg̊ard-Jurik (DJ) [DJ01] en-
cryption scheme whose security relies on the Decisional Composite Residuosity (DCR) assumption),
and relying on a random oracle. More precisely, they define a new primitive called “split-FHE” and
provide a candidate construction of it based on the above primitives and a random oracle, and next
show how split-FHE implies XiO (which by earlier work implies iO under standard assumptions).
We highlight that [BDGM20a] does not provide any proof of security of the split-FHE construction
(even in the random oracle model), but rather informally argue some intuitions, which include a)
circular security (more on this below) of the FHE and the LHE, and b) a “correlation conjecture”
that the FHE randomness (after FHE evaluations) does not correlate “too much” with the messages
being encrypted. The correlation conjecture is not formalized, as the FHE randomness in known
construction actually does depend on the message, so the authors simply conjecture that this cor-
relation cannot be exploited by an attacker to break security of the iO (they also provide heuristic
methods to weaken the correlations); as such they only get a heuristic construction.

Summarizing the above, while there have been enormous progress on realizing iO, known con-
structions are either based on assumptions that are not well understood (high-degree MLMs, various
low-degree PRGs assumptions and LWE with leakage type of assumptions), or the construction
candidates simply do not have proofs of security.

1.1 Our Results

In this work, we provide a new iO construction assuming subexponential security of (a) the LWE
assumption (with subexponential modulus-to-noise ratio), and (b) an (in our eyes) natural circular
security assumption w.r.t the Gentry-Sahai-Water’s (GSW) [GSW13] FHE scheme.

On a high-level, our approach follows that in [BDGM20a], but we show how to remove the
heuristic arguments while instead relying on a concrete circular security assumption. We believe this
constitutes strong evidence for the existence of iO, and places iO on a qualitatively similar footing as
unlevelled FHE (i.e. an FHE that support an a-priori unbounded polynomial number of operations),
for which known constructions also rely on a circular security conjecture [Gen09]. We emphasize
that the type of circular security conjecture that we rely on is stronger and more complex than the
“plain” circular security conjecture used for unlevelled FHE. Yet on a philosophical level, we do not
see any concrete evidence for why the plain circular security is more believable.2

Circular security. Circular security of encryption schemes [CL01, BRS02] considers a scenario
where the attacker gets to see not only encryptions of messages, but also encrypted key cycles. The
simplest form of circular security, referred to as 1-circular security, requires that security holds even
if the attacker gets to see not only the public key pk and an encryption Encpk(m) of a message m (to
be secured), but also an encryption Encpk(sk) of the secret key sk. That is, we require that for any two
messages m0,m1, Encpk(sk||m0) is indistinguishable from Encpk(sk||m0). A slightly more complex
type of circular security, referred to as 2-circular security, considers an encrypted key cycle of size
2 where the attacker gets to see Enc1

pk1
(sk2),Enc2

pk2
(sk1) w.r.t. two (potentially different) encryption

schemes Enc1,Enc2. Encrypted key cycles commonly arise in applications of encryption scheme such
as storage systems (e.g. BitLocker disk encryption utility), anonymous credentials [CL01] and most
recently to construct (unlevelled) FHE [Gen09].

We refer to the assumption that:

If Enc is secure, then 1-circular security holds for Enc.

2See Section 1.4 for an extended comparison.

3

as the 1-circular security conjecture (1CIRC) w.r.t Enc. (We may also consider a subexponential
version of this conjecture which is identically defined except that “security” is replaced by “subexpo-
nential security”.) At first sight, one may be tempted to hope that circular security holds w.r.t. all
secure encryption schemes— after all, the attacker never actually gets to see the secret key, but rather
an encryption of it, which intuitively should hide it by semantic security of the encryption schemes.
Yet, in recent years, counter examples to both 1-circular and 2-circular security have been found (see
e.g. [ABBC10, GH10, CGH12, Rot13, MO14, KRW15, BHW15, KW16, GKW17, WZ17]). However,
all known counter examples are highly artificial, and require carefully embedding some trapdoor
mechanism in the encryption scheme that enables decrypting the cirphertext once you see an en-
cryption of the secret key. As far as we are aware, no “natural” counterexamples are known. Indeed,
a common heuristic consists of simply assuming that 1-circular security holds for all “natural” en-
cryption schemes that are secure; that is, 1CIRC holds for all “natural” encryption schemes —we
refer to this as the 1CIRC heuristic. It is similar to the Random Oracle Heuristic [BR93]: while
“contrived” counterexamples are known (see e.g., [CGH98, MRH04]), it is still commonly used for
the design of practical protocols.

Leakage-resilient Circular Security. In this work, we rely on the assumption that stronger forms
of security are preserved in the presence of a key cycle. More precisely, we consider a notion of O-
leakage resilient security where O is some particular randomness leakage oracle; this notion enhances
the standard semantic security notion by providing the attacker with access to an oracle O(m, r)
that is parametrized by the message m being encrypted and the randomness r under which it is
encrypted, while restricting the attacker to making only “valid” leakage queries (that do not trivially
leak information about the message—this is formalized by letting the oracle output ⊥ whenever a
query is invalid, and saying that the attacker fails whenever this happens). We next define the notion
of 1-circular O-leakage resilient security analogously to 1-circular security, and also define a 1CIRCO

conjecture (resp. a subexponential 1CIRCO conjecture) in the same way as the 1CIRC conjecture
except that “security” is replaced by “O-leakage resilient security”; that is, 1CIRCO holds w.r.t an
encryption scheme Enc if the following holds:

If Enc is O-leakage resilient secure, then 1-circular O-leakage resilient security holds.

Note that we cannot hope that 1CIRCO security holds for all oracles O, even with respect to “natural”
encryption schemes: simply consider an oracle O(m, r) that outputs the message m iff m is a valid
secret key (just as in the counterexample to “plain” 1-circular security for string encryption). Thus,
for 1CIRCO to be meaningful, we need to restrict not only to “natural” encryption schemes, but also
to “natural” oracles O.

Our main theorem shows that for a natural leakage oracle OSRL—which will be referred to as
the “shielded randomness leakage (SRL) oracle”—1CIRCOSRL w.r.t. the GSW encryption scheme
together with the LWE assumption implies the existence of iO.

Theorem 1.1 (Informally stated). Assume the subexponential security of the LWE assumption (with
subexponential modulus-to-noise ratio) and the subexponential 1CIRCOSRL conjecture w.r.t. GSW.
Then, iO exists for the class of polynomial-size circuits.

In the sequel, we refer to OSRL-leakage resilient security (resp. 1-circular OSRL-leakage resilient
security) as SRL-security (resp 1-circular SRL security). We highlight that whereas our main theorem
only relies on the notion of 1-circular SRL security, a notion of 2-circular SRL security (which is
analogously defined) will be instrumental towards proving our final result. We proceed to explain
the notion of SRL security and how the above theorem is proven.

4

1.2 Shielded Randomness Leakage (SRL) Security

As mentionned above, we consider a notion of shielded randomness leakage (SRL) security for
FHE. Roughly speaking, given two messages m0,m1, the attacker gets to see an FHE encryp-
tion c = FHE(mb; r) of mb for a randomly selected b ∈ {0, 1}, and next gets access to a “leakage
oracle” OSRL(mb, r) which upon every invocation sends the attacker an “extra noisy” encryption
c? = FHE(0; r?) of 0—we will refer to the random string r? as the “shield”. Next, the attacker
can select some functions f and values α such that f(mb) = α—that is, we restrict the attacker to
picking functions for which it knows the output when applying the function to the message mb; if
f(mb) 6= α, the attacker directly fails in the game. (The reason why we add this restriction on the
attacker will soon become clear). Finally, the oracle homomorphically evaluates f on the ciphertext
c, letting cf = FHE(f(m); rf) denote the evaluated ciphertext, and returns r? − rf . That is, the
attacker gets back the randomness rf of the evaluated ciphertext masked by the “shield” r?, and as
usual, the attacker’s goal is to guess the bit b. The reason why the attacker is restricted to picking
functions f for which it knows the output α is that for the FHE we consider, given c? and cf , the
attacker can compute c?−cf = FHE(0−f(mb); r?−rf) and thus knowing r?−rf reveals f(mb). So,
by restricting to attackers that already know α = f(mb), intuitively, r?−rf does not reveal anything
else. Indeed, we formally prove that under the LWE assumption, the GSW encryption scheme is
SRL-secure (i.e. OSRL-leakage resilient secure).

Theorem 1.2 (Informally stated). Assume the LWE assumption holds (with subexponential modulus-
to-noise ratio). Then, the GSW scheme is SRL-secure.

On a very high-level, the idea behind the proof is that the encryption c? is a projection, hA(r?) =
Ar? ∈ ZN , where the randomness r? used to produce c? is a vector in Z`N and A is a matrix in Zn×`N

where ` � n, that is, the map hA that describes the encryption is compressing. Therefore, some
“components” of the “shield” r? remain information-theoretically hidden. And this enables hiding
the same components of rf ; furthemore, the components that are not hidden by r? are actually
already revealed by f(mb), which the attacker knows (as we require it to output α = f(mb)).
The formal proof of this proceeds by considering a (simplified) variant of the Micciancio-Peikert
lattice trapdoor method [MP12] for generating the matrix A (which is part of the public key for
GSW) together with a trapdoor that enables sampling short preimages of hA (i.e. solving the ISIS
problem). Whereas traditional trapdoor preimage sampling methods require the preimage to be
sampled according to some specific distribution (typically discrete Gaussian) over preimages, we will
consider a somewhat different notion: we require that given a target vector t, the distribution of
randomly sampled preimages of t is statistically close to the distribution obtained by starting with
any “short” preimage w of t and next adding a randomly sampled preimage of 0. Our proof relies
on the fact that randomly sampled preimages can be sufficiently larger than w to ensure that they
“smudge” w—we here rely on the fact that modulus-to-noise ratio is subexponential (which we need
anyway for the security of our construction) to enable the smudging3.

1-Circular SRL security As mentioned, we define 1-circular security as 1-circular OSRL-leakage
resilient security; we emphasize that this security game is identically defined to the “plain” SRL
security game (described above), with the only exception being that the challenge message now has
the form sk||mb (as opposed to just being mb).

3Another consequence of using smudging is that our lattice trapdoor mechanism and its proof become simpler than
[MP12], which uses a polynomial-size modulus instead, for a better efficiency.

5

1.3 Overview of the XiO Construction

We present a construction that makes a modular use of any LHE satisfying certain properties, and
whose security relies the 2-circular SRL-security w.r.t. GSW and the LHE (i.e., that SRL security of
GSW holds in the presence of a encrypted key cycles of length 2 using GSW and the LHE). To obtain
a subexponentially-secure XiO (which is required to obtain iO by [LPST16]), we need to strengthen
the assumptions to also require subexponential security. Next, we note that the DJ LHE satisfies
the desired properties. We prove that a packed version of Regev’s encryption scheme [Reg05] that
is similar to, but actually different from, the packed construction from [PVW08] does so as well.
We refer to our LHE simply as Packed Regev LHE. Finally, we show that 1-circular SRL security
of GSW implies 2-circular SRL-security of GSW and Packed Regev4. Intuitively, this follows from
fact the Packed Regev is provably circularly secure (for the same reasons as it holds for Regev’s
encryption scheme, as is well known).5 Taken together, this will allow us to prove Theorem 1.1.

Let us start with the construction assuming 2-circular SRL-security w.r.t. GSW and any LHE
satisfying the desired properties. As mentioned, on a high-level, our construction follows similar
intuitions as the BDGM construction. We combine an FHE (in our case the GSW FHE) with a
(special-purpose) LHE to implement an XiO. In fact, in our approach, we do not directly construct
anXiO, but rather construct anXiO with preprocessing—this notion, which relaxesXiO by allowing
the obfuscator to have access to some long public parameter pp, was actually already considered in
[LPST16] and it was noted there that subexponentially-secure XiO with preprocessing also suffices
to get iO.

Towards explaining our approach, let us first recall the approach of BDGM — which relies on
the DJ LHE — using a somewhat different language that will be useful for us.

The BDGM construction. The high-level idea is quite simple and very elegant. Recall that an
XiO is only required to work for programs Π with polynomially many inputs n = poly(λ) where λ is
the security parameter, and the obfuscators running time is allowed to be polynomial in n; the only
restriction is that the obfuscated code should be sublinear in n—we require a “slight” compression of
the truth table. More precisely, the obfuscator is allowed to run in time poly(n, λ) (i.e. polynomial
time in the size of the truth table), but must output a circuit of size poly(λ)n1−ε where ε > 0. Assume
that we have access to a special “batched” FHE which enables encrypting (and computing on) long
messages of length, say m using a short randomness of length poly(λ) log(m); and furthermore that 1)
given the secret key and a ciphertext c, we can efficiently recover the ciphertext randomness 2) given
a ciphertext c and its randomness—which will also be referred to as a “hint”—one can efficiently
decrypt. Given such a special FHE, it is easy to construct an XiO: simply cut the truth table into
“chunks” of length nε, FHE encrypt the program Π, then, homomorphically evalute circuits Ci for
indices i ∈ [n1−ε] such that given the program Π as input, Ci outputs the i’th “chunk” of the truth
table, which we denote by Πi; finally, release the randomness ri (i.e. the “hint”) of the evaluated
ciphertexts. These hints enable compressing nε bits into poly(λ) log(nε) bits and thus the XiO is
compressing.6

4Formally, we need to slightly tweak the Packed Regev scheme to prove this; in particular we need the GSW and
Packed Regev scheme to use the same secret key.

5Also note that, intuitively, 2-circular (SRL) security w.r.t. GSW and DJ (or Packed Regev) implies 1-circular
(SRL) security w.r.t. GSW since given an encrypted 2-cycle, we can always recover a GSW encryption of a GSW secret
key sk by decrypting the LHE ciphertext using homomorphic operations. This implication is not quite true as using
homomorphic operations, one does not obtain a “fresh” encryption of sk, but we can always add a fresh encryption of
0 to get a slightly noisier fresh encryption of sk.

6The reason we need to cut the truth table into chunks instead of directly computing the whole output is that the
size of the FHE public key and ciphertexts may grow polynomially with the length of the output of the homomorphic
evluation, i.e. the ”batching capacity”. So the obfuscation is only compressing when we have a large number of chunks.

6

Unfortunately, none of the known FHE constructions have short randomness. BDGM, however,
observes that there are linear homomorphic encryptions schemes (LHE), notably the DJ LHE, that
satisfy the above requirements. Moreover, many FHEs are batcheable (with “long” randomness)
and have “essentially” linear decryption: decryption is an inner product of the ciphertext with the
secret key, then rounding. That is, the linear operations yield the plaintext with some additional
small decryption noises, that are removing when rounding. So if we start off with such an FHE
and additionally release an LHE encryption of the FHE secret key, we can get an FHE with the
desired “batcheable with short randomness” requirement: we first homomorphically evaluate the
inner product of the FHE ciphertext with the encrypted FHE secret key, then simply release the
randomness for the evaluated LHE ciphertext (which now is short).

But there are problems with this approach: (1) since FHE decryption requires performing both
a linear operation and rounding, we are leaking not only Πi but also the decryption noises, which
is detrimental for the security of the FHE (2) the LHE randomness may actually leak more than
just the decrypted LHE plaintext (i.e. something about how the LHE ciphertext was obtained).
As BDGM shows, both of these problems can be easily overcome if we have access to many fresh
LHE encryptions of some “smudging” noise (which is large enough to smudge the FHE decryption
noises)7. Therefore, the only remaining problem is to generate these LHE encryptions of smudging
noises. This is where the construction in BDGM becomes heuristic: (1) they propose to use a random
oracle to generate a long sequence of randomness (2) this sequence of randomness can be interpreted
as a sequence of LHE encryptions of uniformly random strings ui for i = 1, . . . , n1−ε, since the DJ
LHE has dense ciphertext (3) they additionally provide an FHE encryption of the LHE secret key
sk (note that there is now a circular security issue), on which they FHE-homomorphically evaluate
a function fi that decrypts the i’th LHE ciphertext produced by the random oracle, and computes
MSB(ui), the most significant bits of ui (4) finally they LHE-evaluate the (partial) decryption of
the evaluated FHE ciphertext (which encrypts MSB(ui)); the obtained LHE ciphertext can now be
subtracted from the LHE ciphertexts generated by the random oracle, to get an LHE encryption of
ui −MSB(ui), which is a noise of the appropriate size, i.e. smudging but not uniform.

One problem with this approach, however, is that while we do obtain an LHE encryption of
appropriate smudging noise, it is not actually a fresh ciphertext (with fresh randomness). The issue
is that the randomness rfi of the evaluated FHE ciphertext of MSB(ui) may (and actually will)
depend on the randomness of the original LHE ciphertext obtained by the RO. Another problem
is that LHE can only compute the first step of an FHE decryption (namely, the linear operations),
the LHE encryption obtained actually encrypts a message of the form: ui −MSB(ui) + noisei. As
we know, revealing the extra noise is detrimental for security (this is why we are generating LHE
encryptions of smudging noises in the first place). Unfortunately, the extra noise that results from
partially decrypting the FHE ciphertext depends on ui, so the lower-order bits of the latter cannot
smudge the former. BDGM here simply assumes that the attacker cannot exploit these correlations,
and thus only obtain a heuristic construction.

We shall now see how to obtain the appropriate LHE encryption of smudging noises in a prov-
ably secure way, relying on 2-circular SRL-security of GSW and DJ—that is, OSRL-leakage resilient
circular security of GSW and DJ.

Removing the RO. Our first task will be to remove the use of the RO. That will actually be
very easy: as we have already observed, it suffices to get an XiO with preprocessing to obtain iO,
so instead of using a random oracle, we will simply use a long random string as a public parameter,
and interpret it as LHE encryptions of random strings.

7They formally prove the security of their scheme in an idealized model with access to an oracle that generates fresh
LHE encryptions of smudging noise.

7

Re-encrypting the FHE. The trickier problem will be to deal with the issue of correlations. We
will here rely on the fact that we are considering a particular instantiation of the FHE: namely,
using (a batched version of) the GSW encryption scheme. On a high-level, the idea for breaking the
correlation is to ”refresh” or re-encrypt the evaluated FHE ciphertext (which encrypts MSB(ui)) to
ensure that the randomness is fresh and independent of the evaluations. This way, the decryption
noise itself is independent of the evaluated circuit. GSW ciphertexts can be re-randomized simply
by adding a fresh extra noisy FHE encryption of 0. How do we get such enecryptions? GSW
ciphertexts are not dense, so we cannot put them in the public parameters, and even if they were, we
still wouldn’t be able to get an encryption of 0 (we would have an encryption of a uniformly random
plaintext). The public key of the GSW encryption scheme actually contains a bunch of encryptions of
0, but fewer than the amount we need (or else we wouldn’t get a compressing XiO). Instead, we use
the public key of the GSW encryption to generate extra noisy encryptions of 0, and we include the
(many) random coins (r?i)i∈[n1−ε] used to generate these ciphertexts as part of the public parameters
of the XiO (recall that the public parameters can be as long as we want). This method does indeed
enable us to get a fresh FHE encryption of the most significant bits, and thus the correlation has be
broken and intuitively, we should be able to get a provably secure construction. But two obstacles
remain: (1) we are revealing the randomness used to re-randomize the ciphertexts, and this could
hurt security, or render the re-randomization useless and (2) we still have a circular security issue
(as we FHE-encrypt the LHE secret key, and LHE-encrypt the FHE secret key). Roughly speaking,
the first issue will be solved by relying on SRL-security of GSW, and the second issue will be solved
by our circular security conjecture.

In more detail, we note that the re-randomized evaluated FHE ciphertext of MSB(ui) and the pub-
lic parameters r?i are statistically close to freshly generated extra noisy FHE encryption of MSB(ui)
using randomness r?i , and setting the public parameter to r?i −rfi , where rfi is the randomness of the
evaluated ciphertext, before re-randomization. In other words, the re-randomization achieves a no-
tion which we refer to as “weak circuit privacy”, where the re-randomized ciphertext is independent
of the evaluated function fi. Furthermore, noisy GSW encryptions of MSB(ui) essentially have the
form of a noisy GSW encryption of 0, to which MSB(ui) is added. So, other than MSB(ui), which
is truly random, r?i − rfi is simply an SRL leakage on a GSW encryption of the LHE secret key sk!
Thus, intuitively, security should now follow from circular SRL security of GSW and the LHE.

The final construction. We summarize our final XiO construction with preprocessing. The
public parameter pp is a long random string that consists of two parts:

� The first part FHE.PubCoin will be interpreted as a sequence of rerandomization vectors r?;

� The second part LHE.PubCoin will be interpreted as a sequence of LHE encryptions

The obfuscator, given a security parameter λ and a circuit Π : {0, 1}logn → {0, 1}, where n = poly(λ)
proceeds as follows:

� Output the public keys of the FHE and LHE: The obfuscator generates a fresh key-pair
(pk, sk) for the LHE, and next generate a key-pair (pk, sk) for the GSW FHE. (To make it easier
for the reader to remember which key refers to which encryption scheme, we place a line over
all keys, ciphertexts and algorithms, that correspond to the linear homomorphic encryption.)
The modulus N of the GSW encryption is set to be the same that the modulus that defines
the message space ZN of the LHE scheme. Additionally, it chooses N large enough to enable
encrypting messages of size nε. Finally, it outputs the public keys (pk, pk).

� Output an FHE encryption of the circuit: It outputs an FHE encryption (w.r.t. pk) of
the program Π, which we denote by ct1.

8

� Output encrypted key cycle: It computes ct2, an FHE encryption of sk, and ct, an LHE
encrytion of sk. It outputs the key cycle ct2, ct.

� Output hints: For every i ∈ [n1−ε], it outputs a short “hint” ri computed as follows:

– Evaluate the circuit: Homomorphically evaluate the circuit Ci on ct1 and let cti
denote the resulting evaluated FHE ciphertext — recall that ct1 encrypts a program Π,
and the circuit Ci takes a input a program Π and outputs the i’th chunk of its truth table.

– Compute an FHE encryption ctMSB,i of MSB(ui): Consider the function fi(Π, sk)
that ignores the input Π but uses the input sk to decrypt the i’th LHE ciphertext from
LHE.PubCoin into a plaintext ui and outputs MSB(ui). The obfuscator homomorphically
evaluates fi on the ciphertexts ct1, ct2 (where, recall, ct2 is an encryption of sk). Let
ctMSB,i = FHE(MSB(ui); rfi) denote the resulting evaluated FHE ciphertext.

– Rerandomize ctMSB,i into ct′MSB,i: It uses the i’th chunk of FHE.PubCoin to get the ran-
domness r?i ; generates an extra noisy FHE encryption of 0 using r?i and homomorphically
adds it to ctMSB,i. Let ct′MSB,i = FHE(MSB(ui); r

?
i + rfi) denote the new (re-randomized)

ciphertext.

– Proxy re-encrypt cti as an LHE ciphertext cti: It uses ct (which, recall, is an LHE
encryption of sk) to homomorphically compute the linear part of the FHE decryption of
cti, which yields an LHE encryption of the value 2ω · Πi + noisei where noisei is an FHE
decryption noise, and 2ω is taken large enough so that the plaintext Πi can be recovered
by rounding.

Similarly, it homomorphically computes the partial FHE decryption of ct′MSB,i, which

yields an LHE encryption of the value 2ω
′ ·MSB(ui)+noiseMSB,i, where once again noiseMSB,i

denotes an FHE decryption noise, and 2ω
′

= 1 for reasons that will become clear later.
We rely on the fact that GSW FHE (and many other FHE schemes) admits a flexible
“scaled” evaluation algorithm, that can choose which integer 2ω to use when performing
the homomorphic evaluation (this was used also in prior works, including [BDGM20a]).
The resulting LHE ciphertext is subtracted from LHE(2ω ·Πi+noisei), and therefore yields
LHE(2ω ·Πi + noisei −MSB(ui)− noiseMSB,i).

Finally, it homomorphically adds the LHE encryption of ui that is part of the LHE public
coins, to obtain cti = LHE(mi), where mi = 2ω ·Πi + noisei−MSB(ui)− noiseMSB,i + ui =
2ω ·Πi + noisei + noiseMSB,i + LSB(ui), where LSB(ui) denotes the least significant bits of
ui.

The integer ω′ is chosen to be equal to 0 so that the smudging noise LSB(ui) is directly
added to the FHE noises noisei − noiseMSB,i. As opposed to the value Πi that we place in
the higher-order bits of the plaintext, we need the smudging noise to be at the same level
than the FHE noises, so they ”blend” together.

– Release hint ri for LHE ciphertext cti: It uses sk to recover the randomness ri of cti
(recall that the LHE we use has a randomness recoverability property), and outputs ri.

To evaluate the obfuscated program on an input x ∈ {0, 1}n, that pertains to the i’th chunk of the
truth table of Π for some i ∈ [n1−ε], we compute cti just like the obfuscator did (note that this does
not require knowing the secret key, but only information contained in the obfuscated code). Finally,
we decrypt cti using the hint ri to recover the message mi described above (recall that the LHE
we use has the property that ciphertexts can be decrypted if you know the randomness). Finally,
perform the rounding step of FHE decryption on mi to obtain Πi, which contains Π(x).

9

Outline of the security proof. We provide a very brief outline of the security proof. We will
rely on the fact that LHE cirphertexts (of random messages) are dense (in the set of bit strings), and
additionally on the fact that both the LHE and the FHE we rely on (i.e. DJ and GSW) satisfy what
we refer to as a weak circuit privacy notion. This notion, roughly speaking, says that any encryption
of a message x can be rerandomized into fresh (perhaps extra noisy) encryption of x+ y, by adding
a fresh (perhaps extra noisy) encryption of y.

As usual, the proof proceeds via a hybrid argument. We start from an XiO obfuscation of
a program Π0 and transition until we get an XiO obfuscation of Π1, where Π0 and Π1 are two
functionally equivalent circuits of the same size.

� Hybrid 0: Honest XiO(Π0). The first hybrid is just the honest obfuscation of the circuit
Π0.

� Hybrid 1: Switch to freshly encrypted ct′MSB,i. Hybrid 1 proceeds exactly as Hybrid 0
up until the point that the ciphertexts ctMSB,i get re-encrypted into ct′MSB,i, with the exception
that FHE.PubCoin are not sampled yet. Next, instead of performing the re-encryption, we
sample ct′MSB,i as a fresh extra noisy encryption of MSB(ui) using randomness r?i , and setting
FHE.PubCoin to be r?i − rfi (recall that rfi is the randomness obtained when homomorphically
evaluating fi on the FHE encryption of sk). We finally continue the experiment in exactly the
same way as in Hybrid 0.

It follows from the “weak circuit privacy” property of the FHE that Hybrid 0 and Hybrid 1 are
statistically close. Note that in Hybrid 1, for each i ∈ [n1−ε], the i’th chunk of FHE.PubCoin
can be thought of as SRL leakage on the fresh encryption ct′MSB,i computed w.r.t. function fi,
which will be useful for us later.

� Hybrid 2: Switch LHE.PubCoin to encryptions of random strings. Hybrid 2 proceeds
exactly as Hybrid 1 except that instead of sampling LHE.PubCoin as a random string, we sample
it as fresh LHE encryptions of random strings ui, for i = 1, . . . , n1−ε. It follows by the density
property of the LHE that Hybrid 2 is statistically close to Hybrid 1.

� Hybrid 3: Generate cti as a fresh encryption. Hybrid 3 proceeds exactly as Hybrid
2 except that cti is generated as a fresh encryption of mi using fresh randomness ri, and
the i’th chunk of LHE.PubCoin is instead computed homomorphically by subtracting the LHE
encryption of sk>(cti − ctMSB,i) (obtained after homomorphically decrypting cti and ct′MSB,i

using ct) from the LHE ciphertext cti. Recall that mi = sk>(cti − ctMSB,i) + ui so the above
way of computing the i’th chunk of LHE.PubCoin ensures that it is valid encryption of ui as in
Hybrid 2, but this time with non-fresh, homomorphically evaluated randomness.

It follows from the weak circuit privacy property of the LHE that Hybrid 3 and 2 are statistically
close.

Note that it was possible to define this hybrid since ct′MSB,i remains exactly the same no matter
what the LHE.PubCoin are. This was not true in Hybrid 0, and we introduced Hybrid 1 to
break this dependency.

Note further that in Hybrid 3, we no longer use sk (i.e. the secret key for LHE); previously it
was used to recover ri.

� Hybrid 4: Generate cti without FHE noises. Hybrid 4 proceeds exactly as Hybrid 3
except that cti is generated as a fresh encryption of mi = 2ω ·Π0

i + LSB(ui), whereas in Hybrid
3, it was generated as fresh encryption of mi = 2ω ·Π0

i + LSB(ui) + noisei− noiseMSB,i. That is,
we use LSB(ui) as a smudging noise to hide the extra noise noisei − noiseMSB,i. We can do so

10

since (1) the extra FHE noise is small and independent of LSB(ui) (2) the rest of the obfuscated
code can be generated from the value LSB(ui) + noisei − noiseMSB,i only (in particular it does
not require to know LSB(ui) itself). It follows that Hybrid 4 is statistically close to Hybrid 3.

� Hybrid 5: Switch to encryption of Π1: Hybrid 5 proceeds exactly as Hybrid 4 except that
ct1 is an encryption of Π1 (instead of Π0 in prior hybrids).

Note that other than the encrypted key cycle, we never use the FHE secret key, and due
to Hybrid 3, we no longer use the LHE secret key. So, at first sight, Hybrid 5 ought to be
indistinguishable from Hybrid 4 by circular security of the FHE and the LHE. Recall that
FHE.PubCoin leaks something about the randomness used by the FHE encryption ct′MSB,i,
but the leakage is exactly an SRL leakage (and note that in the experiment we do know the
output αi of the function fi that is applied to the plaintexts encrypted in ct1, ct2—namely,
it is MSB(ui) where ui is a random string selected in the experiment, see Hybrid 2). Thus,
indistinguishability of Hybrid 5 and Hybrid 4 follows from 2-circular SRL-security of the FHE
and the LHE.

� Hybrids 6-10: For i ∈ [5], Hybrid 5 + i is defined exactly as 5 − i, except that ct1 be an
encryption of Π1. Statistical closeness of intermediary hybrids follows just as before.

The above sequence of hybrid allows us to conclude the following theorem.

Theorem 1.3 (Informally stated). Assume the 2-circular SRL-security of the GSW and DJ encryp-
tion schemes. Then, there exists an XiO for polynomial-size circuits taking inputs of length log(λ)
where λ is the security parameter.

An alternative LHE based on Packed Regev. We remark that we can obtain an alternative
construction of an LHE with the desired properties by considering an packed version of the Regev
encryption scheme. Our construction is slightly different, but similar in spirit, to the Packed Regev
from [PVW08]. Recall that a (plain) Regev public key consist of a pair A, s>A + e>, where A←R

Zm×nq with m ≥ n log(q), the vector s ←R Znq is the secret key, and e ∈ Zmq is some small “noise”

vector. An encryption of a message µ has the form Ar, (s>A+e>)r+B ·µ where r←R {0, 1}m is the
encryption randomness and B is an upper bound on the size of noise (so as to enable decryption).
This scheme is linearly homomorphic, but for security, the size of the randomness |r| needs to be
greater than n log(q), which is more than that size of the message: the randomness is too long for
our purposes.

To get succinct decryption hints, we simply reuse the same randomness r for many encryptions
using different secret keys s1, s2, . . . s` and different noises e1, e2, . . . , e`. The secret key is now a
matrix S ∈ Z`×nq , and the public key becomes (A,SA + E) where E ∈ Z`×mq is a noise matrix.
The encryption of a vector of messages µ = (µ1, . . . , µ`) is then (Ar, (SA + E)r +Bµ). This is the
scheme from [PVW08]. Despite the fact that this encryption is still linearly homomorphic, and has
the advantage of having rate-1 ciphertext size, its randomness is not short: to carry on the proof of
security, we need to rely on the fact that r contains enough bits of entropy even when the information
Ar (which is short) and Er (that is long) is leaked. The can only be true when the dimension of r,
m, grows with the number of bits that are batched, `.

Thus, we depart from the scheme in [PVW08] by adding a smudging noise8 in the ciphertext,
to hide the information Er. The ciphertext is of the form: (Ar, (SA + E)r + e′ +B · µ), where e′

8Note that using a carefully crafted noise that needs not be of smudging size, as done in [MP12], we can ”unskew”
the noise Er and hide the information of r. We favor clarify of the exposition over efficiency and resort to using
smudging noises.

11

is the extra smudging noise that hides the error term Er, ensuring that we only have the short Ar
leakage and the usual proof can again be applied.

This scheme is still linearly homomorphic, but the encryption randomness is still large, as even
though we reuse r, the added noise terms e′ are large. However, we rely on the fact that knowing e′

is not needed for decrypting. Indeed, to decrypt, we just need to know a small vector r̃ ∈ Zmq such
that Ar̃ = Ar. That can be used to remove the term SAr from the ciphertext, and recover B · ν
plus some small noise. To sample such vector, we use a standard trapdoor sampling mechanism as
in prior works [Ajt96, GPV08, AP09, MP12]. This makes the scheme hintable with succinct hints.

We still have two (minor) obstacles, though. This scheme (as well as Regev’s original scheme
or the scheme from [PVW08]) does not satisfy two of the other properties needed for our XiO
construction: (1) density, and (2) weak circuit privacy. But it almost does. Extra noisy ciphertexts,
where the noise reaches the bound B are actually dense, and for extra noisy ciphertext, weak circuit
privacy also holds (just as it did for GSW). So, we can directly instantiate the LHE in our XiO
construction with this Packed Regev construction, as long as we slightly relax the notion of an LHE
to just require density when considering extra noisy ciphertexts.

Thus we can conclude:

Theorem 1.4 (Informally stated). Assume 2-circular SRL-security of the GSW and the Packed
Regev encryption schemes holds. Then, there exists an XiO for polynomial-size circuits taking
inputs of length log(λ) where λ is the security parameter.

Relying only on 1CIRCOSRL w.r.t. GSW. We finally explain how to base security solely on
1-circular SRL security w.r.t. GSW. We proceed in two steps. First, we remark that in our XiO
construction, security still holds if both the FHE and LHE use the same secret key (as long as 2-
circular SRL security of the two schemes hold in this setting). Next, we present a slight modification
of Packed Regev, called Packed-Regev’, where the secret key s is just a vector like in GSW, which
it then expanded into a Packed Regev secret key (which is a matrix) by tensoring with the identify
matrix. We finally remark that (as is well known for the Regev scheme), 1-circular security directly
holds for Packed Regev’—more precisely, given LWE samples (obtained from the GSW public key),
we can simulate a Packed Regev’ public key, and a Packed Regev’ encryption of the secret key. Thus,
“same-key” 2-circular SRL security of GSW and Packed-Regev’ is implied just by 1-circular security
of GSW! We conclude:

Theorem 1.5 (Informally stated). Assume 1-circular SRL-security of the GSW encryption scheme.
Then, there exists an XiO for polynomial-size circuits taking inputs of length log(λ) where λ is the
security parameter.

The proof of Theorem 1.1 is finally concluded by upgrading Theorems 1.2 and 1.5 to apply also in
the subexponential regime, relying on the subexponential 1CIRCOSRL conjecture, and finally relying
on the transformation from subexponentially-secure XiO with pre-processing (and subexponential
LWE) to iO [LPST16].

1.4 Comparing Circular SRL-security to “Plain” Circular Security

Let us make a few remarks on the assumption that GSW satisfies 1-circular SRL-security. Clearly,
this assumption is stronger than the assumption that GSW satisfies “plain” 1-circular security—
simply consider an attacker that does not request any leakage. Additionally, we wish to highlight a
few qualitative differences between “plain” circular security w.r.t. GSW and circular SRL security
w.r.t. GSW:

12

� “Plain” circular security of GSW is a simple non-interactive falsifiable assumption. Circular
SRL-security is also a (relatively simple) falsifiable assumption, but the security game is now
interactive; for the type of SRL security needed for our application, a single “parallel” SRL
query suffices and such a notion of SRL security can be specified as a 5-round security game.

As we explain in more detail in Section 3.2.3, for our application, one could define a non-
interactive falsifiable variant of SRL security—roughly speaking, where the messages and the
leakage-selection algorithm are randomly selected—such that the subexponential hardness of
this circular “random-SRL” security notion suffices9, but in our eyes, this non-interactive se-
curity game is less natural than the interactive one (and thus does not add much insight).

� It is also worth noting that for the notion of “plain” circular security, an alternative way of
defining circular security is to require indistinguishability of encryptions of the secret key and
encryptions of 0; this notion (together with non-circular security) implies circular security the
way we have defined it (i.e. indistinguishability of encryptions of two messages in the presence
of an encryption of the secret key). However, this implication no longer holds in the context of
SRL security (see Section 2.8 for more details). And this is why we are directly defining circular
security as indistinguishability of encryptions of messages in the presence of an encrypted secret
key.

The above two points indicate that the assumption that GSW is circularly-SRL security is both (a-
priori) stronger, and also somewhat different from a qualitiative point of view, that the assumption
that GSW is just “plain” circularly secure. Yet, in our eyes, the main justifications for believing that
GSW is circularly secure hold true also for circular SRL-security:

1. In both cases (plain and SRL), security holds in a non-circular setting, assuming LWE.

2. In both cases (plain and SRL), the security game being considered captures a simple and
natural process (albeit for the case of SRL security, it is more complex).

3. Finally, just as for the notion plain circular security, it does not appear simple to even just
come up with any bit-encryption scheme (such as GSW) that is SRL secure, but not 1-circular
SRL secure.10

1.5 Concurrent and Subsequent Work

A concurrent and independent breakthrough result by Jain, Lin and Sahai [JLS20] presents a con-
struction of iO based on subexponential security of well-founded assumptions: (1) the SXDH assump-
tion on asymmetric bilinear groups, (2) the LWE assumption with subexponential modulus-to-noise
ration, (3) a Boolean PRG in NC0, and (4) an LPN assumption over a large field and with a small
error rate 1

`δ
where δ > 0 and ` is the dimension of the LPN secret. Assumptions (1) and (2) have

widespread use and are considered standard. (3) has also been well-studied in recent years. (4) is a
very natural coding problem, but the range of parameters used in (4) differs from most prior works
in the cryptographic literature, a majority of which focus on a less sparse error rate (typically a
constant) and/or use the field F2.

9This follows from a union bound as the length of both the messages m0,m1 and the description of the leakage-
selection algorithm are “short”.

10Wichs and Zirdelis [WZ17] show that any public-key bit encryption scheme can modified in a way that preserves
security yet violates circular security (using a special form of obfuscation that can be satisfied under LWE). The same
method can be used to obtain an SRL-secure encryption scheme (by modifying GSW as in [WZ17]) that is not 1-circular
SRL secure.

13

A concurrent and independent work by Wee and Wichs [WW20] presents a new elegant heuristic
instantiation of the BDGM paradigm based only on lattice-based primitives. Similarly to us, their
construction proceeds by implementing XiO with pre-processing. They also state a new security
assumption with a circular security flavor (involving a PRF and LWE samples) under which they can
prove the security of their construction: Roughly speaking, their construction proceed by reducing
XiO with pre-processing to the task of “oblivious LWE sampling”, and next they provide a heuristic
instantiation of a protocol for performing oblivious LWE sampling. Their security assumption is
essentially that their protocol is a secure oblivious LWE sampler. It is worth noting that even
though they also rely on the BDGM approach to implement XiO, they manage to directly construct
an FHE with short randomness, relying on a “dual” variant of the GSW encryption scheme, thereby
completely removing the use of any LHE (whereas we obtain short decryption hints by combining
GSW with our Packed Regev).

The initial version of our paper did not contain the LWE-based instantiation of the LHE using
Packed Regev (we just had the DJ-based instantiation). Following up on the initial posting of
our paper, but concurrently and independently from our LWE-based construction, a preprint by
Brakerski et al [BDGM20b] also provides an LWE-based way to instantiate the LHE within our
framework. Differently from our construction, however, they rely on a variant of the “Dual Regev”
encryption scheme, whereas we rely on regular Regev. They assume 2-circular SRL security holds
w.r.t. GSW and their new encryption scheme, whereas we show that for our instantiation of the
LHE, it suffices to assume 1-circular SRL security of GSW.

2 Preliminaries and Definitions

In this section, we recall some standard definitions and results. Additionally, we include a formal-
ization of the circular security assumption that we consider.

Attackers, negligible functions and subexponential security. Below, for simplicity of expo-
sition, we provide definitions for polynomial security of all the primitives we consider. As usual, we
model attackers as non-uniform probabilistic polynomial-time algorithms, denoted nuPPT. We say
that a function µ(·) is negligible if for every polynomial p(·), there exists some λ0 ∈ N such that
µ(λ) ≤ 1

p(λ) for all λ > λ0. The security definitions we consider will require that for every nuPPT A,
there exists some negligible function µ such that for all λ, A succeeds in “breaking security” w.r.t.
the security parameter λ with probability at most µ(λ). All the definitions that we consider can be
extended to consider subexponential security ; this is done by requiring the existence of a constant
ε > 0, such that for every non-uniform (probabilistic) attacker A with running time poly(λ) · 2λε ,
there exists some negligible function µ such that for all λ, A succeeds in “breaking security” w.r.t.
the security parameter λ with probability at most µ(λ) · 2−λε (as opposed to just µ(λ)).

Notations. For all n,m ∈ N, we write [−n,m] = {−n,−n+1, . . . ,m}, [n] = [1, n]. For all α, β ∈ R
such that β > α, we denote by (α, β) = {x ∈ R, α < x < β}. For all v1, . . . , vn ∈ Z, we denote by
v = (v1, . . . , vn) the column vector in Zn. For all probabilistic polynomial time (PPT) algorithm A,
we denote by y ← A(x) the random process of running A on input x and obtaining the output y.
For all sets S, we denote by x←R S the process of sampling a random element x uniformly over S.
For any sequence x = {xλ}λ∈N, we write x ∈ 2poly(λ) if there exists a polynomial p(·) such that for
all λ ∈ N, xλ ∈ N and the bit size of xλ is less than p(λ). For all functions B(·), we say an ensemble
{Dλ}λ∈N of distributions that output in Z is B-bounded if for all λ ∈ N, all x in the support of Dλ, we
have |x| < B(λ. We say an ensemble {Dλ}λ∈N is polynomially-bounded if there exists a polynomials
p(·) such that {Dλ}λ∈N is p-bounded. We say two ensembles {D0

λ}λ∈N and {D1
λ}λ∈N are statistically

14

close (without specifying the statistical distance) and we write {D0
λ}λ∈N ≈s {D1

λ}λ∈N when for all
λ ∈ N, the distributions D0

λ and D1
λ have statistical distance 2−Ω(λ).

2.1 Standard Lemmas

We first recall a special case of the leftover hash lemma from [ILL89].

Lemma 2.1 (leftover hash lemma). For all λ, q, d,m ∈ N such that m ≥ ddlog(q)e+2λ, the statistical
distance between the following distributions is upper bounded by 2−λ:{

A←R Zd×mq , r←R [−1, 1]m : (A,Ar)
}

{
A←R Zd×mq ,u←R Zdq : (A,u)

}
.

We will also make use of the following standard “smudging” lemma (see e.g. [AJL+12] for an explicit
proof of this lemma).

Lemma 2.2 (Smudging). For all B,B′ ∈ N such that B < B′, all x ∈ [−B,B], the statistical
distance between the following distributions is upper bounded by B

B′ :{
u←R [−B′, B′] : u

}{
u←R [−B′, B′] : u+ x

}
.

2.2 Indistinguishability

We start by recalling the standard definition of computational indistinguishability [GM84].

Definition 2.1 (Computational indistinguishability). Two ensembles {D0
λ}λ∈N and {D1

λ}λ∈N are
said to be computationally indistinguishable if for every nuPPT A there exists a negligible function
µ such that for every λ ∈ N,∣∣∣Pr[A(1λ,D0

λ) = 1]− Pr[A(1λ,D1
λ) = 1]

∣∣∣ ≤ µ(λ)

We write {D0
λ}λ∈N ≈c {D1

λ}λ∈N to denote that {D0
λ}λ∈N and {D1

λ}λ∈N are computationally indistin-
guishable.

2.3 Definition of iO

We recall the definition of iO [BGI+01, GGH+13b]. Given polynomials n(·), s(·), d(·), let Cn,s,d =
{Cλ}λ∈N denote the class of circuits such that for all λ ∈ N, Cλ is the set of circuits with input size
n(λ), size at most s(λ) and depth at most d(λ). We say that a sequence of circuits {Πλ}λ∈N is
contained in {Cλ}λ∈N (denoted by {Πλ}λ∈N ∈ {Cλ}λ∈N) if for all λ ∈ N, Πλ ∈ Cλ.

Definition 2.2 (iO for P/poly). We say that iO exists for P/poly if for all polynomials n(·), s(·), d(·),
there exists a tuple of PPT algorithms (Obf,Eval) such that the following holds:

� Correctness: For all {Πλ}λ∈N ∈ Cn,s,d, there exists a negligible function µ such that for all
λ ∈ N, all x ∈ {0, 1}n(λ),

Pr[Π̃← Obf(1λ,Πλ) : Eval(1λ, Π̃,x) = Π(x)] ≥ 1− µ(n)

15

� IND-security: For all sequences {Πλ
0}λ∈N, {Πλ

1}λ∈N ∈ Cn,s,d such that for all λ ∈ N, Πλ
0 and

Πλ
1 are functionally equivalent circuits, the following ensembles are computationally indistin-

guishable: {
Π̃← Obf(1λ,Π0

λ) : Π̃)
}
λ∈N{

Π̃← Obf(1λ,Π1
λ) : Π̃)

}
λ∈N

2.4 Definition of XiO

We recall the definition of XiO with pre-processing [LPST16]. We restrict our attention to circuits
with input length O(log λ): Given polynomials n(·), s(·), d(·), let Clog(n),s,d = {Cλ}λ∈N denote the
class of circuits such that for all λ ∈ N, Cλ is the set of circuits with input size log(n(λ)), size at
most s(λ) and depth at most d(λ).

Definition 2.3 (XiO for Plog/poly). We say XiO exists for Plog/poly if there exists a polynomial
p(·) and a constant ε ∈ (0, 1), such that for all polynomials n(·), s(·), d(·), there exists a tuple of PPT
algorithms (GenObf ,Obf,Eval) such that the following holds:

� Correctness: For all {Πλ}λ∈N ∈ Clog(n),s,d, there exists a negligible function µ such that for

all λ ∈ N, all x ∈ {0, 1}n(λ):

Pr[pp← GenObf(1
λ), Π̃← Obf(pp,Πλ) : Eval(pp, Π̃,x) = Π(x)] ≥ 1− µ(λ)

� Succinctness: For all {Πλ}λ∈N ∈ Clog(n),s,d, all λ ∈ N, all pp in the support of GenObf(1
λ), all

Π̃ in the support of Obf(pp,Πλ), we have that
∣∣Π̃∣∣ ≤ n(λ)1−ε · p(λ, s(λ), d(λ))

� IND-security: For all sequences {Πλ
0}λ∈N, {Πλ

1}λ∈N ∈ Clog(n),s,d such that for all λ ∈ N,

Πλ
0 and Πλ

1 are functionally equivalent circuit, the following ensembles are computationally
indistinguishable: {

pp← GenObf(1
λ), Π̃← Obf(pp,Π0

λ) : (pp, Π̃)
}
λ∈N{

pp← GenObf(1
λ), Π̃← Obf(pp,Π1

λ) : (pp, Π̃)
}
λ∈N

The following theorem from [LPST16] connects XiO (with pre-processing) with iO assuming the
LWE assumption (we formally define the LWE assumption in Definition 3.4).

Theorem 2.4. Assume the existence of a subexponentially-secure XiO for Plog/poly, and assume
subexponential security of the LWE assumption. Then there exists an (subexponentially-secure) iO
for P/poly.

2.5 Definition of Public-Key Encryption

We start by recalling the definition of public key encryption (PKE). For our purposes, we will consider
PKE in a Common Reference String (CRS) model, where we first generate a CRS, and next, the
key generation algorithm will take the CRS as input. This added generality will be useful to capture
scenarios where multiple encryption schemes will be operating over the same ring ZN—this ring can
be specified in the CRS.

16

Definition 2.5 (Public-Key Encryption). A Public-Key Encryption (PKE) scheme is a tuple of
PPT algorithms (CRSgen,Gen,Enc,Dec) where:

� CRSgen(1λ): given as input the security parameter λ ∈ N, it outputs a common reference string
crs.

� Gen(crs): given as input crs, it outputs the pair (pk, sk).

� Encpk(m; r): given as input the public key pk, a message m ∈ {0, 1}∗ and some randomness
r ←R {0, 1}∞11, it outputs a ciphertext ct.

� Decsk(ct): given as input the secret key sk and a ciphertext ct, it deterministically outputs a
plaintext.

We furthermore require these algorithms to satisfy the following correctness condition: for all λ ∈ N,
all crs in the support of CRSgen(1λ), all pairs (pk, sk) in the support Gen(crs), all messages m ∈
{0, 1}∗, all ciphertexts ct in the support of Encpk(m), we have:

Decsk(ct) = m.

2.6 Definition of Linearly-Homomorphic Encryption

Definition 2.6 (Linearly-Homomorphic Encryption). For any polynomial `(·), a PKE scheme (CRSgen,
Gen,Enc,Dec) is said to be a Linearly-Homomorphic Encryption (LHE) with plaintext size `(·), if
there exists a PPT algorithm Add such that the following holds:

� For all λ ∈ N, all crs in the support of CRSgen(1λ), all (pk, sk) in the support of Gen(crs), the
public key pk contains a message space (Apk,+), which is an Abelian group of size |A| > 2`(λ).

� For all λ ∈ N, all crs in the support of CRSgen(1λ), all (pk, sk) in the support of Gen(crs),
all messages m1,m2 ∈ Apk, all ciphertexts ct1, ct2 in the support of Encpk(m1),Encpk(m2)
respectively, the algorithm Add(pk, ct1, ct2) determinsitically outputs a ciphertext in the support
of Encpk(m1 +m2), where the addition is performed in Apk.

2.7 Definition of Fully Homomorphic Encryption

Definition 2.7 (Fully-Homomorphic Encryption). A PKE scheme (CRSgen,Gen,Enc,Dec) is said
to be a Fully-Homomorphic Encryption (FHE) scheme for depth δ(·) circuits if there exists a PPT
algorithm Eval such that for all λ ∈ N, all crs in the support of CRSgen(1λ), all pairs (pk, sk) in
the support of Gen, all n ∈ N, all messages m1, . . . ,mn ∈ {0, 1}, all ciphertexts ct1, . . . , ctn in
the support of Encpk(m1), . . . ,Encpk(mn) respectively, all circuits f : {0, 1}n → {0, 1} of depth at
most δ(λ), Eval(pk, f, ct1, . . . , ctn) deterministically outputs an evaluated ciphertext ctf such that
Decsk(ctf) = f(m1, . . . ,mn).

Note that the depth of the circuit that are homomorphically evaluated is a priori bounded by
δ(λ) for a polynomial δ (that is, we consider the case of leveled FHE). The arity of the evaluated
circuits (denoted by n above), however, is unbounded. The FHE we will be using — namely, from
[GSW13] — natively supports arithmetic circuits (with addition and multiplication gates), which
capture Boolean circuits.

11As usual, since all algorithms are PPT we really only need to consider a finite prefix of {0, 1}∞ to define the
uniform distribution.

17

2.8 Leakage-resilient and Circular Security

We recall the standard definition of CPA-security for encryption schemes; we furthermore generalize
it to a notion of O-leakage resilient security, which extends the standard definition by also providing
the attacker with access to a leakage oracle O receiving the message m? being encrypted, and the
randomness r under which it is encrypted. Our notion of O leakage-resilience restricts to attackers
that only make “valid” leakage queries, where a query is said to be valid if the oracle does not return
⊥ in response to it. In more detail, to “win” in the security game, the attacker A must (a) correctly
guess which among two message m0,m1 is being encrypted, while (b) not having made any queries
to O on which O returns ⊥.

Definition 2.8 (O-leakage resilient security). We say that a public-key encryption scheme PKE =
(CRSgen,Gen,Enc,Dec) is O-leakage resilient secure if for all stateful nuPPT adversaries A, there
exists some negligible function µ(·) such that for all λ ∈ N, Pr[Expλ,A = 1] ≤ 1/2 + µ(λ), where the

experiment ExpPKEλ,A is defined as follows:

ExpPKEλ,A =


crs← CRSgen(1λ), (pk, sk)← Gen(crs)
(m0,m1)← A(pk), b← {0, 1}
m? = mb, r←R {0, 1}∞
ct = Encpk(m

?; r), b′ ← AO(m?,r)(ct)
Return 1 if |m0| = |m1|, b′ = b and O did not return ⊥; 0 otherwise.


We say that PKE is simply secure if the above holds when we do not give A access to an oracle.

We will also consider a 1-circular secure variant of O-leakage resilient security, which is identically
defined except the message m? is defined as sk||mb. In other words, we require indistinguishability
of m0 and m1 in the presence of an encryption of the secret key sk.

Definition 2.9 (O-leakage resilient circular security). We say that O-leakage resilient 1-circular
security holds for PKE if Definition 2.8 holds w.r.t. PKE with the exception that m? is defined as
sk||mb (instead of mb).

We finally state the 1CIRC assumption that we will rely on in our main theorem.

Definition 2.10 (1CIRC assumption). We say that the (subexponential) 1CIRCO assumption holds
w.r.t PKE if the following holds: if PKE is (subexponentially) O-leakage resilient secure, then (subex-
ponential) O-leakage resilient 1-circular security holds for PKE.

A Note of the Definition of Circular Security. Let us remark that while the above definition
of circular security (i.e. indistinguishability of encrypted messages in the presence of an encryption
of the secret key) is the most direct way of capturing the needs for circular security in applications
(think e.g., of encrypted disk space), an alternative definition is also commonly used in the literature:
it requires (a) standard security, and (b) indistinguishability of encryptions of sk and 0λ. We want to
emphasize that whereas in the standard setting—without a leakage oracle—this alternative definition
implies the circular security notion we gave, this is no longer seems to be true in the oracle-enhanced
setting. To see this, consider an oracle that given m?, r, outputs ⊥ to any query in case m? does
not contain a valid secret key, and consider some encryption scheme (e.g., GSW) for which it seems
hard to come up with encryptions of the secret key (given just the public key). Leakage queries can
never be useful to distinguish encryptions of sk and 0λ—as the oracle will output ⊥ with probability
negligibly close to 1/2 and thus the attacker’s advantage is negligible—so O-leakage resilient circular
security is equivalent to plain (i.e. without an oracle) circular security. Yet, leakage queries w.r.t.

18

such an oracle may be useful when considering indistinguishability between sk||m0 and sk||m1. In
fact, for the particular leakage queries that we will be relying on, this phenomena does occur: they
are valid in case m? is of the form sk||m where sk is a valid secret key, but they are invalid if sk is
not a valid secret key. For this reason, we directly formalize circular security as indistinguishability
of encrypted messages in the presence of an encrypted secret key.

3 Shielded Randomness Leakage Security of GSW

In this section, we define our notion of Shielded Randomness Leakage (SRL) security, which corre-
sponds to O-leakage resilience security for a particular leakage oracle O. Then, we prove the GSW
FHE is SRL secure under the LWE assumption.

3.1 Definition of Shielded Randomness Leakage Security

To define our notion of SRL security, we focus on FHE schemes that satisfy the following properties.

3.1.1 Batch correctness

This property states that decryption of evaluated ciphertexts solely consists of computing the inner
product of the evaluated ciphertext with the secret key (both of which are vectors), then rounding.
Also, a single scalar obtained by decryption can encode many output bits of the evaluated function.
That is, we consider FHE scheme where the crs contains a modulus Ncrs such that decryption of an
evaluated ciphertext yields a scalar in ZNcrs . Our definition of FHE is flexible w.r.t. the choice of
the modulus Ncrs, which we can afford since the LWE assumption holds for essentially any (large
enough) modulus. As observed in [Mic19, BDGM19, BDGM20a], most existing FHE schemes can
fit this framework.

Definition 3.1 (Batch correctness). For all poynomials δ, an FHE scheme (CRSgen,Gen,Enc,Dec,Eval)
for depth-δ circuits satisfies batch correctness if there exist a PPT Eval′ and a polynomial σ such that
following holds:

� For all λ ∈ N, all crs in the support of CRSgen(1λ) contain a modulus Ncrs ∈ N; for all (pk, sk)
in the support of Gen(crs), we have: pk contains Bpk ∈ N such that Ncrs ≥ 2λBpk; the secret
key is of the form: sk ∈ Zσ(λ).

� For all λ ∈ N, all crs in the support of CRSgen(1λ), all (pk, sk) in the support of Gen(crs),
all arities ν ∈ N, all messages m1, . . . ,mν ∈ {0, 1}, all depth-δ(λ) circuits f of arity ν, all
ciphertexts cti in the support of Encpk(mi) for all i ∈ [ν], all scaling factors ω < log(Ncrs),
the algorithm Eval′(pk, f, ω, ct1, . . . , ctν) deterministically outputs an evaluated ciphertext ctf ∈
Zσ(λ)
Ncrs

such that:

sk>ctf = 2ωf(m) + noisef ∈ ZNcrs ,

with |noisef | < Bpk.

Note that one can recover the value f(m) ∈ ZNcrs when using the scaling factor ω = dlog(Bpk)e+1.
That is, we can define Eval(pk, f, ct1, . . . , ctν) = Eval′(pk, f, dlog(Bpk)e+ 1, ct1, . . . , ctν).

19

3.1.2 Randomness homomorphism

This property states that it is possible to homomorphically evaluates a circuit f not only on the
ciphertexts, but also the randomness used by the ciphertexts. The resulting evaluated randomness
rf belongs to a noisy randomness space R? — typically the fresh randomness comprises noises, and
the evaluated randomness consists of larger-magnitude noises. The encryption algorithm Enc? is
essentially the same as Enc except it operates on the evaluated (noisier) randomness. The ciphertext
obtained by first evaluating the randomness, then using the noisy encryption algorithm Enc? is the
same as obtained by directly evaluating the original ciphertexts.

Definition 3.2 (Randomness homomorphism). An FHE scheme FHE = (CRSgen,Gen,Enc,Dec,Eval)
for depth-δ circuits that satisfies batch correctness (defined above) also satisfies randomness homo-
morphism if there exists a sequence of noisy randomness spaces {R?λ}λ∈N, and the following additional
PPT algorithms:

� Evalrand(pk, f, r,m): given as input the public key pk, a depth-δ(λ) circuit f of arity ν, random
coins r = (r1, . . . , rν) where for all i ∈ [ν], ri ∈ {0, 1}∞, and messages m ∈ {0, 1}ν , it
deterministically outputs an evaluated randomness rf ∈ R?λ.

� Enc?pk(m; r?): given as input the public key pk, a message m ∈ ZNcrs and the randomness
r? ∈ R?, it outputs a noisy ciphertext ct?.

We furthermore require these algorithms to satisfy the following condition: for every λ ∈ N, all crs
in the support of CRSgen(1λ), all pairs (pk, sk) in the support of Gen(crs), all ν ∈ N, all depth-δ(λ)
circuits f of arity ν, all messages mi ∈ {0, 1}, all randomness ri ∈ {0, 1}∞ for i ∈ [ν], denoting
cti = Encpk(mi; ri) and rf = Evalrand(pk, f, r,m), we have rf ∈ R?λ and:

Eval′(pk, f, 0, ct1, . . . , ctν) = Enc?pk(f(m); rf).

3.1.3 Shielded Randomness-Leakage security

We proceed to formally define shielded randomness leakage (SRL) security for randomness homo-
morphic FHEs with batch correctness. SRL security will be defined as O-leakage resilient security for
a particular leakage oracle OSRL that given a message m? and randomness r, allows the attacker A
to ask to see a “shielded” version of the homomorphically evaluated randomness rf for any function
f for which A knows the output f(m?). To make sure the attacker can only query the oracle with
functions on which it knows the output, we require the atacker to also provide the output α, and
the oracle outputs ⊥ if f(m?) 6= α (and thus, by the definition of O-leakage resilient security, the
attacker fails if it ever picks a function for which it does not know the output).

To formalize the SRL oracle, we restrict ourselves to FHE where the noisy randomness consists
of integer vectors. That is, there exists a polynomial t(·) such that the sequence {R?λ}λ∈N is such
that for all λ ∈ N, R?λ ⊆ Zt(λ). Henceforth, we denote by r1 + r2 ∈ R?λ and r1− r2 ∈ R?λ the addition
and subtraction in Zt(λ). We denote R?λ by R? for simplicity.

Definition 3.3 (SRL security). An FHE scheme FHE for depth δ circuits satisfying randomness
homomorphism is said to be (circular) SRL-secure if it is OFHESRL -leakage resilient (1-circular) secure
for the following oracle OFHESRL , where Evalrand and Enc? are the algorithms guaranteed to exist by the
definition of randomness homomorphism.

20

OFHESRL (m?, r):

r? ←R R?, ct? = Enc?pk(0; r?)

(f, α)← A(ct?)
rf = Evalrand(pk, f, r,m?).
If f(m?) = α and f is of depth at most δ, then leak = r? − rf ∈ R?.
Otherwise, leak = ⊥. Return leak.

Roughly speaking, given a message m? and randomness r, the oracle OFHESRL samples fresh random
coins r? from which it generates a noisy encryption of zero, that is sent to the adversary. The
adversary next chooses a circuit f and a value α ∈ Z. The oracle then checks that f(m?) = α, upon
which it returns the evaluated randomness “shielded” with the randomness r?; otherwise, it outputs
⊥ and in this case, the attacker fails.

In the concrete FHE we consider from [GSW13], the randomness leakage corresponds to the
randomness obtained from homomorphically subtracting the evaluated challenge ciphertext from
Enc?pk(0; r?). Revealing such leakage allows the adversary to decrypt and recover the value 0−f(m?).
This is why we only allow the attacker to request leakage functions f for which it knows the output
f(m?). Whenever the scheme FHE is clear from context, we simply write OSRL to denote OFHESRL .

A note on the falsifiability and interactivity of (circular) SRL security. We note that both
SRL and circular SRL security of an FHE is a simple and natural interactive falsifiable assumption
about the FHE: the assumption is defined as an interactive security game involving a PPT challenger
C, with a threshold of 1/2 (i.e. the attacker needs to win with probability non-negligibly higher than
1/2). Let us make some additional observations about this assumption:

� Let us first point out that for our actual application, we only need to rely on a relaxed form of
SRL security where A sends all its queries in parallel. Thus, such a “parallel” SRL assumption
can be captured as a 6-round security game (1) A first gets the public key, (2) A picks the
messages m0,m1, (3) A gets the encryptions of mb and the shields, (4) A selects the parallel
leakage queries {fi, αi}, (5) A gets back the (shielded) randomness {rfi} and (6) A finally
makes a guess for b. In fact, we actually do not need CPA security for adaptively chosen
messages so we can compress it to a 5-round assumption. We write down this concrete 5-round
assumption that suffices for us in Appendix ??.

� Next, let us note that for our application, we only need SRL security for: (1) short messages
m0,m1, of length λε, for some ε ∈ (0, 1), (2) a query-selecting mechanism that has some fixed
polynomial running time, and whose description size is only λε +O(1). For such applications,
we can stipulate a non-interactive SRL-security game: the challenger picks random messages
m0,m1, and a random query-selecting machine TM M , both of size O(λε). Next, it checks
that M generates valid queries (within the a-priori fixed time-bound) w.r.t. to both m0,m1 (or
in the case of circular security w.r.t. sk||m0 and sk||m1). If so, the challenger gives the attacker
the public key, an encryption of m?, the shields and the SRL leakage. The attacker wins if it
correctly guesses b. If not (i.e. some of the SRL queries were invalid), the same information
excluding the SRL leakage is sent to the attacker.

If this non-interactive SRL-assumption is 2
O
(
λε
′)

-hard, where ε′ > ε, it implies that it is still

2
O
(
λε
′)

-hard for every (short) choices of m0,m1 and M by a union bound over m0,m1,M ,
and this is exactly what is needed for our XiO proof, as the query-selecting machine selects
leakage queries that are valid w.r.t. sk||m0 and sk|m1 (with high probability).

21

While the above discussion shows that we could have presented a relatively simple non-interactive
(and falsifiable) circular SRL-assumption (which we can prove holds w.r.t. GSW based on LWE in
the non-circular setting), in our opinion, doing so does not elucidate the assumption on a qualitative
level. Rather, we have chosen to present the circular SRL-assumption in a more general and stronger
form as we believe this interactive version is: (1) more natural—it captures a very natural (in our
eyes) security game for an FHE, and (2) it is still secure in the non-circular setting (based on LWE),
and (3) due to the fact that the assumption is stronger and simpler, it becomes easier to attack (and
conversely, the absence of attacks would inspire more confidence).

Let us furthermore note that for our proof, we only need to consider very specific SRL leakage
queries and thus an alternative way of making the assumption “technically weaker” is to restrict to
those types of queries, but we believe that would just make the assumption more ad-hoc, without
adding any real reason for increased confidence in the security.

3.2 SRL Security of the GSW FHE from LWE

We now recall the FHE scheme from [GSW13], whose security relies on the LWE assumption. The
variant we present uses a large modulus to permit batching many output bits in a single scalar. We
prove the GSW scheme is SRL-secure (as per Definition 3.3) under the LWE assumption.

3.2.1 Learning With Error Assumption

We recall the Learning with Error (LWE) assumption with subexponential modulus-to-noise ratio.
In [Reg05], Regev showed that solving the LWE problem with modulus q, dimension κ, arbitrary
number of samples m, and discrete Gaussian distribution χ of standard deviation σ = αq ≥ 2

√
κ

(this is the distribution over Z that follows the normal distribution of standard deviation σ, and it is
such that Pr[e← χ : |e| > σ

√
log(κ)] ∈ 2−Ω(κ)) is at least as hard as quantumly approximating the

shortest independent vector problem (SIVP) to within an approximation factor γ = Õ(κ/α) in the
worst case κ-dimensional lattices. His result only applied to every modulus q that is a prime power,
or a product of small (poly-size) distinct primes. Later, in [PRS17], the result was generalized to
any modulus q.

As typical, we choose a noise-to-modulus ratio α = 2−κ
c

for a constant c ∈ (0, 1), which
corresponds to the SIVP problem with an approximation factor γ = Õ(κ · 2κc), which is believed to
be intractable for c small enough.

Originally, the LWE assumption was defined for uniformly random secrets; however, several works
[Mic01, ACPS09] showed that LWE is no easier if the secret is drawn from the noise distribution,
which is the variant we will use. Finally, we use an noise distribution that is bounded with probability
1 (as opposed to all but negligible probability, as it is the case for the discrete Gaussian distribution
that is commonly used). This mild strengthening is not fundamental but will make our definitions
easier to work with (e.g. correctness will hold with probability 1). That is, we rely on the following
LWE assumption.

Definition 3.4 (LWE assumption [Reg05, PRS17]). For all sequences q ∈ 2poly(κ), all ensembles
χ of efficiently sampleable distributions over Z, we say that (subexponential) security of the LWE
assumption holds w.r.t. the sequence q and the ensemble χ if for all polynomials m(·), the following
ensembles are (subexponentially) computationally indistinguishable:{

A←R Zm(κ)×κ
qκ , s← χκκ, e← χm(κ)

κ , z = As + e ∈ Zm(κ)
qκ : (A, z)

}
κ∈N

.{
A←R Zm(κ)×κ

qκ , z←R Zm(κ)
qκ : (A, z)

}
κ∈N

.

22

We say the (subexponential) security of the LWE assumption holds if there exists a constant c ∈ (0, 1)
such that for all sequences q ∈ 2poly(κ) and all polynomials B such that for all κ ∈ N, the following
holds:

� B(κ) ≥ 2
√
κ log(κ)

� B(κ) ≥ qκ2−κ
c

there exists a B-bounded ensemble χ of efficiently sampleable distributions over Z, such that (subex-
ponential) security of the LWE assumption holds w.r.t. q, χ.

3.2.2 The GSW scheme

We recall the FHE from [GSW13]. We present the leveled variant (without bootstrapping), which is
parameterized by a polynomial δ that bounds the depth of the circuits that can be homomorphically
evaluated. Its security relies on the LWE assumption with a subexponential modulus-to-noise ratio.
We denote the scheme by GSWδ.

The key generation algorithm we describe works when given as input any CRS that contains a
modulus N , that will be used by the scheme. Apart from being sufficiently large to ensure correctness
(that is, larger than the noise magnitude obtained when evaluating circuits of depth at most δ), no
property is required from the modulus.

This way, the key generation algorithm can be fed with the CRS generated as in the GSW FHE
scheme, and recalled here, but also with a CRS that describes the public key of a Linearly Homo-
morphic Encryption scheme that performs linearly operation over ZN . This ensures compatibility:
both schemes can operate on the same ring ZN .

Notations. For all polynomials δ, we denote by bδ the polynomial such that for all poynomially-
bounded ensemble χ, all polynomials κ, all λ ∈ N, the noise obtained from homomorphically evalu-
ating circuits of depth at most δ(λ) on GSW ciphertexts generated with LWE noise sampled from
the distribution χλ and LWE secret of dimension κ(λ), is upper bounded by 2bδ(λ).

• CRSgen(1λ):

Let N = 22λ+bδ(λ). The algorithm outputs crs = N .

• Gen(crs):

Given as input crs which contains a modulus N ≥ 22λ+bδ(λ), it chooses a sequence {qn}n∈N, a Bχ-
bounded ensemble {χn}n∈N for a polynomial Bχ and a polynomial κ such that LWE holds w.r.t. q
and χ, and qκ(λ) = N (by the LWE assumption, given in Definition 3.4, we know such parameters
exist). We abuse notations and write κ = κ(λ), χ = χκ(λ) and Bχ = Bχ(κ(λ)) from here on. The

algorithm sets w = (κ + 1)dlog(N)e, m = 2(κ + 1)dlog(N)e + 2λ, B? = 2λ(w + 1)δdlog(N)e and
B = Bχ(w + 1)δdlog(N)em. Note that we have N ≥ 22λB.

It samples A ←R Zκ×mN , s ← χκ, e ← χm, g = (1, 2, . . . , 2dlog(N)e−1) ∈ Zdlog(N)e
N , G =

g> ⊗ Id =

g> 0 · · ·
0 g>

...
. . .

 ∈ Z(κ+1)×w
N where Id ∈ Z(κ+1)×(κ+1)

N denotes the identity matrix,

U =

(
A

s>A + e>

)
∈ Z(κ+1)×m

N . It sets pk = (B,U,G), and sk = (−s, 1) ⊗ g ∈ ZwN . The pa-

rameters define the noisy randomness space R? = [−B?, B?]m. It outputs (pk, sk).

23

• Enc(pk,m):

Given the public pk, a message m ∈ {0, 1}, it samples the randomness R←R [−1, 1]m×w and outputs

the ciphertext ct = UR + mG ∈ Z(κ+1)×w
N . For any m ∈ {0, 1}n, we denote by Encpk(m; r) the

concatenation of the encryptions Encpk(m1; R1), . . . ,Encpk(mn; Rn).

• Eval(pk, f, ct1, . . . , ctν):
Given the public key pk, a depth-δ(λ) arithmetic f : {0, 1}ν → {0, 1}, ciphertexts ct1, . . . , ctν , it runs
ctf ← Eval′(pk, f, ω, ct1, . . . , ctν) with scaling factor ω = dlog(B)e + 1, where the algorithm Eval′ is
described below, for the batch correctness property.

We demonstrate that the GSW FHE satisfies the batch correctness property.

Proposition 1 (Batch correctness). For all polynomials δ, the GSWδ scheme described above satis-
fies batch correctness, as per Definition 3.1.

Proof: We present the following PPT algorithm:

• Eval′(pk, f, ω, ct1, . . . , ctν):
Given the public pk, a depth-δ(λ) arithmetic circuit f : {0, 1}ν → ZN , a scaling factor ω < log(N),
ciphertexts ct1, . . . , ctν , it evaluates the circuit gate by gate as follows.

� Addition gate between cti and ctj : return cti + ctj ∈ Z(κ+1)×w
N .

� Multiplication gate between cti and ctj : return cti · BD(ctj) ∈ Z(κ+1)×w
N , where BD(ctj) ∈

{0, 1}w×w denotes the binary decomposition of ctj ∈ Z(κ+1)×w
N .

By recursively applying the above operations, one can turn the ciphertexts ct1, . . . , ctν into Ci
f =

URi
f + fi(m)G ∈ Z(κ+1)×w

N , where fi(m) ∈ {0, 1} denotes the i’th bit of the binary decomposition

of f(m) ∈ ZN , that is, f(m) =
∑dlog(N)e−1

i=0 2ifi(m). For all i ∈ [0, dlog(N)e − 1], we have ‖Ri
f‖∞ ≤

(w+ 1)δ. By definition of the matrix G, choosing the κ · dlog(N)e+ i+ω+ 1’th column of Ci
f yields:

cif =
(
Arif , (s

>A + e>)rif + 2ω+ifi(m)
)
∈ Zκ+1

N .

Summing up for all i ∈ [0, dlog(N)e − 1], we get: ct′f =
(
Arf , (s

>A + e>)rf + 2ωf(m)
)
∈ Zκ+1

N ,

where rf =
∑dlog(N)e−1

i=0 rif of norm ‖rf‖∞ ≤ (w + 1)δdlog(N)e. It outputs the evaluated ciphertext

ctf = BD
(
ct′f
)
∈ {0, 1}w.

The evaluated ciphertext ctf ∈ {0, 1}w is such that:

sk>ctf = −s>Arf + (s>A + e>)rf + 2ωf(m) = 2ωf(m) + noisef ∈ ZN ,

where noisef = e>rf . We have |noisef | ≤ (w + 1)δdlog(N)eBχm = B.
We turn to proving that it also satisfies the randomness homomorphism property.

Proposition 2 (Randomness homomorphism). For all polynomials δ, the GSWδ scheme satisfies
the randomness homomorphism property as per Definition 3.2.

Proof: We present the following PPT algorithms:

• Enc?(pk,m; r?):

24

Given the public pk, a message m ∈ Z, the randomness r? ∈ [−B?, B?]m, it computes ct′ =(
Ar?, (s>A + e>)r? +m

)
∈ Zκ+1

N , and outputs ct = BD(ct′) ∈ {0, 1}w.

• Evalrand(pk, f, (Ri)i∈[ν], (mi)i∈[ν]):

This algorithm is similar to the ciphertext evaluation algorithm. Namely, given the public pk, a
depth-δ(λ) arithmetic circuit f : {0, 1}ν → ZN , randomness R1, . . . ,Rν ∈ [−1, 1]m×w, it evaluates
the circuit gate by gate as follows.

� Addition gate between Ri and Rj : return Ri + Rj ∈ Zm×wN .

� Multiplication gate between Ri and Rj : compute ctj = Encpk(mj ; Rj), return RiBD(ctj) +

miRj ∈ Zm×wN , where BD(ctj) ∈ {0, 1}w×w denotes the binary decomposition of ctj ∈ Z(κ+1)×w
N .

By recursively applying the above operations, one can turn the randomness R1, . . . ,Rn into Ri
f ∈

Zm×wN such that: Ci
f = URi

f+fi(m)G ∈ Z(κ+1)×w
N , for all i ∈ [0, dlog(N)e−1]; and ‖Ri

f‖∞ ≤ (w+1)δ.

By definition of the matrix G, choosing the κdlog(N)e+ i+ 1’th column of Ri
f yields rif ∈ ZmN such

that: cif =
(
Arif , (s

>A + e>)rif + 2ifi(m)
)
∈ Zκ+1

N , and ‖rif‖∞ ≤ (w + 1)δ. Summing up for all i ∈

[0, dlog(N)e − 1], we get: rf =
∑dlog(N)e−1

i=0 rif ∈ R? such that ct′f =
(
Arf , (s

>A + e>)rf + f(m)
)
∈

Zκ+1
N . It outputs the evaluated randomness rf .

3.2.3 SRL Security

Before proving the SRL security of GSW under the LWE assumption, we describe new trapdoor
generation and pre-image sampling algorithms that are inspired by those from [MP12]. As in prior
works, the trapdoor generation algorithm generates a matrix U ∈ Zd×mN that is statistically close to

uniformly random over Zd×mN , together with an associated trapdoor TU. The pre-image sampling
algorithm, given a target vector t ∈ ZdN , produces a short pre-image, that is, a short vector r ∈ ZmN
such that Ur = t. In these works, the distribution of these short pre-images is independent of the
trapdoor — typically they follow a discrete (spherical) Gaussian distribution. Our requirements are
slightly different: a pre-image produced by our sampling algorithm when given as input a target
vector t ∈ ZdN should be statistically close to a pre-image produced by our sampling algorithm when
given as input the vector 0 ∈ ZdN , shifted by a much smaller pre-image of t. That is, if a very short
pre-image is given, adding a somewhat short pre-image of 0 (produced by the sampling algorithm)
to it will produce a pre-image that looks like a fresh output of the sampling algorithm on input t.
This inherently requires smudging size noises, which implies the use of an exponential-size modulus
q. In fact this property is not known to hold for existing trapdoor generation and pre-image sampling
algorithms using polynomial-size modulus.

We prove this property for the concrete algorithms provided in [MP12], which we simplify since
we can afford to use smudging-size noises. We provide a self-contained description of the scheme and
its proofs here.

Lattice trapdoors.

• TrapGen(1λ, N, d):

Given as input the security parameter λ ∈ N, a modulus N ∈ N, a dimension d ∈ N, it sets

25

m̃ = ddlog(N)e + 2λ, w = ddlog(N)e, m = m̃ + w, computes the gadget matrix G = g> ⊗ Id =g> 0 · · ·
0 g>

...
. . .

 ∈ Zd×wN where Id ∈ Zd×dN denotes the identity matrix and g = (1, 2, . . . , 2dlog(N)e−1) ∈

Zdlog(N)e
N , Ũ←R Zd×m̃N , R←R [−1, 1]m̃×w, U = (Ũ‖−ŨR+G) ∈ Zd×mN , TU = R. It outputs (U, TU).

• PreImSamp(U, TU, t, B):

Given as input the matrix U, the trapdoor TU, a target vector t ∈ ZdN and a bound B ∈ N, it
samples v ←R [−B,B]m, sets b = BD (Uv + t) ∈ {0, 1}w×w which denotes the binary decomposi-

tion of Uv + t ∈ ZdN . It outputs

(
Rb
b

)
− v ∈ ZmN .

We show the following properties hold.

Proposition 3 (Correctness of TrapGen). For all λ,N, d, writing m = 2ddlog(N)e+2λ, the following
distributions have statistical distance at most 2−λ:{

U←R Zd×mN : U
}

{
(U, TU)← TrapGen(1λ, N, d) : U

}
.

Proof: The proposition follows readily from Lemma 2.1 (leftover hash lemma).

Proposition 4 (Correctness of PreImSamp). For all λ, q, d,B ∈ N, all (U, TU) in the support of
TrapGen(1λ, N, d), all t ∈ ZdN , all r ∈ ZmN in the support of PreImSamp(U, TU, t, B), are such Ur = t
and ‖r‖∞ < B + w.

Proof: Straightforward.

Proposition 5 (Security). For all λ,N, d,B ∈ N, writing m = 2ddlog(N)e + 2λ, for all w ∈ ZmN
such that ‖w‖∞ < B′, the statistical distance of the two following distributions is upper-bounded by
B′/B:

{(U, TU)← TrapGen(1λ, N, d), r̃0 ←R PreImSamp(U, TU,0, B) : r̃0 + w ∈ ZmN}
{(U, TU)← TrapGen(1λ, N, d), r̃← PreImSamp(U, TU,Uw, B) : r̃}

Proof: By definition of PreImSamp we have: r̃0 =

(
Rb
b

)
− v where v ←R [−B,B]m and b =

BD(Uv) ∈ {0, 1}w. For all w ∈ ZmN such that ‖w‖∞ < B′, by Lemma 2.2 (smudging), the following
distributions have statistical distance B′/B: {v ←R [−B,B]m : v} and {v ←R [−B,B]m : v + w}.

This implies that r̃0 + w ≈
(

Rb′

b′

)
− v, where b′ = BD(Uv + Uw). The latter is identically

distributed to PreImSamp(U, TU,Uw, B).

Theorem 3.5 (SRL security). Assume the (subexponential) security of the LWE assumption holds.
Then, for all polynomials δ, GSWδ is (subexponentially) SRL secure.

Proof: For all nuPPT adversaries A, all λ ∈ N, we use the following hybrid experiments.

• H0
λ,A: is the experiment ExpGSWδ

λ,A from Definition 2.8.

26

• H1
λ,A: is as H0

λ,A except the LWE sample s>A + e> from the public key is switched to a uni-

formly random vector using the LWE assumption. That is, the public key is computed as fol-

lows: A ←R Zκ×mN , v ←R ZmN , U =

(
A
v>

)
; the gadget matrix G is computed as in H0

λ,A, and

pk = (B,U,G). The secret key is also computed as in H0
λ,A (but now it is uncorrelated with pk),

namely: s←R χ
κ, sk = (−s, 1)⊗g ∈ ZwN . The challenge ciphertext is computed as ct = Encpk(m

?; r)
and the oracle OSRL(m?, r) behaves as in H0

λ,A. The LWE assumption implies that for all nuPPT A,

there exists a negligible function µ such that for all λ ∈ N, |Pr[H0
λ,A = 1] − Pr[H1

λ,A = 1]| ≤ µ(λ),
since these experiments can be efficiently simulated from U and the winning condition can be effi-
ciently checked.

• H2
λ,A: is asH1

λ,A except the matrix U from the public key is sampled from (U, TU)← TrapGen(1λ, N, κ+

1). By Property 3, this is statistically close (within statistical distance 2−Ω(λ)) to generating a uni-

formly random U ←R Z(κ+1)×m
N as done in H1

λ,A. The experiments can be simulated from U, thus,
for all nuPPT A, we have:

{H1
λ,A}λ∈N ≈s {H2

λ,A}λ∈N.

• H3
λ,A: is as H2

λ,A except we use the oracle ÕSRL instead of OSRL:

ÕSRL(m?, ct):

r? ←R R?, ct? = Enc?pk(0; r?)

(f, α)← A(ct?)

BD(ct′f) = Eval′(pk, f, 0, ct). Parse ct′f =
(
Arf ,v

>rf + f(m?)
)
∈ Zκ+1

N .

Compute tf = (Arf ,v
>rf) ∈ Zκ+1

N , and r̃f ← PreImSamp(U, TU, tf , B
?2−λ/2).

If f(m?) = α, and f is of depth δ, then leak = r? − r̃f ∈ R?.
Otherwise, leak = ⊥. Return leak.

Note that the oracle ÕSRL only takes as input the message m? ∈ {0, 1}∗ and the challenge ciphertext
ct = Encpk(m

?; r), but not the randomness r itself. Instead of computing the evaluated randomness
rf = Evalrand(pk, f,m?, r), it computes a small r̃f that is consistent with the evaluated ciphertext
ctf = BD(ct′f), that is, such that ct′f = (Ar̃f ,v

>r̃f + f(m)). Clearly, the distributions: (ct, rf),

which corresponds to H2
λ,A and (ct, r̃f), which corresponds to H3

λ,A are distinct — for one thing, the
first distribution has less entropy than the second distribution where r̃f is sampled freshly. However,
the value r̃f is shielded by the noisy randomness r? ←R R?. Because it is of much larger magnitude
than rf and r̃f , the latter can smudge the difference δf = rf− r̃f , which would successfully transition
from H2

λ,A to H3
λ,A. To effectively hide δf , we need to make sure r? ∈ Zm itself is hidden. Partial

information is revealed in ct? = Enc?pk(0; r?), of the form Ur? ∈ Zκ+1
N . Intuitively, the component of

r? along U is revealed by ct?, but the remaining entropy of r? is hidden; in particular, its component
along U⊥, the orthogonal space of U, is hidden. Because r̃f is consistent with ctf , we have Uδf = 0;
that is, δf is orthogonal to U. The orthogonal component of r? can simply smudge δf . This argument
is formalized in Lemma 3.1. Overall, for all nuPPT A, we have:

{H2
λ,A}λ∈N ≈s {H3

λ,A}λ∈N.

To complete the proof of Theorem 3.5, we now show that for all nuPPT A, all λ ∈ N, we have:
Pr[H3

λ,A = 1] ≤ 1/2. To do so, we consider the event fail (and the complementary event fail), which

27

happens when A chooses a pair of messages (m0,m1) and makes a query of the form (f?, α?) to
OSRL such that f?(m0) 6= f?(m1).

First, we show that Pr[H3
λ,A = 1|fail] ≤ 1/2. This follows from the fact that conditioning on

fail, the query (f?, α?) makes OSRL output ⊥ with probability 1/2 over the choice of b←R {0, 1}, in
which case the experiment H3

λ,A outputs 0.

Finally, we show that Pr[H3
λ,A = 1|fail] ≤ 1/2. This follows from the fact that in the experiment

H3
λ,A, the only information revealed about the random bit b is f(m?) where m? = mb. Since we

condition on fail, we know that f(m0) = f(m1). Thus, there is no information revealed about b and
Pr[H3

λ,A = 1|fail] = 1/2.

Lemma 3.1. For all nuPPT A, we have: {H2
λ,A}λ∈N ≈s {H3

λ,A}λ∈N.

Proof: We introduce intermediate hybrids H2.i
λ,A for i = 1, 2 which are defined for all nuPPT

adversaries A and all λ ∈ N as follows.
The experiment H2.1

λ,A is as H2
λ,A except is uses the following oracle O1

SRL instead of OSRL.

O1
SRL(m?, r):

r? ←R R?, r̃0 ← PreImSamp(U, TU,0, B
?2−λ/2), ct? = Enc?pk(0; r? − r̃0)

(f, α)← A(ct?)
rf = Evalrand(pk, f, r,m?).
If f(m?) = α and f is of depth δ, then leak = r? − r̃0 − rf ∈ R?.
Otherwise, leak = ⊥. Return leak.

We first prove that for all nuPPT A, we have:

{H2
λ,A}λ∈N ≈s {H2.1

λ,A}λ∈N.

The only difference between these experiments is that O1
SRL subtract a pre-image of 0 ∈ ZmN from

the shield, that is, it uses r? − r̃0 with r? ←R R? and r̃0 ← PreImSamp(U, TU,0, B
?2−λ/2) instead

of r?.
By Property 4, r̃0 ∈ ZmN is such that ‖r̃0‖∞ < B?2λ/2. Thus, by Lemma 2.2 (smudging), the

following distributions have statistical distance at most 2−λ/2:

{r? ←R [−B?, B?]m : r?} and {r? ←R [−B?, B?]m : r? − r̃0}.

The leftmost distribution corresponds to the experiment H2
λ,A (with post-processing), whereas the

rightmost distribution corresponds to the experiment H2.1
λ,A (with the same post-processing). This

completes the proof that {H2
λ,A}λ∈N ≈s {H2.1

λ,A}λ∈N.

Now, we introduce another intermediate hybrid, H2.2
λ,A, which uses the oracle O2

SRL instead of

O1
SRL, where O2

SRL behaves just as O1
SRL with the only exception that ct? is encrypted using the

randomness r? (as opposed to randomness r? − r̃0):

O2
SRL(m?, r):

r? ←R R?, ct? = Enc?pk(0; r?)

(f, α)← A(ct?)

rf = Evalrand(pk, f, r,m?), r̃0 ← PreImSamp(U, TU,0, B
?2−λ/2).

If f(m?) = α and f is of depth δ, then leak = r? − r̃0 − rf ∈ R?.
Otherwise, leak = ⊥. Return leak.

28

By Property 4, we have, Ur̃0 = 0. This implies Enc?pk(0; r? − r̃0) = Enc?pk(0; r?). Thus, for all
nuPPT A, we have:

{H2.1
λ,A}λ∈N = {H2.2

λ,A}λ∈N.

To conclude the proof of this lemma, we now prove that for all nuPPT A, we have:

{H2.2
λ,A}λ∈N ≈s {H3

λ,A}λ∈N.

To do so, we note that rf ∈ ZmN is such that ‖rf‖∞ < B?2−λ. Moreover, it is independent of
the vector r̃0 ← PreImSamp(U, TU,0, B

?2−λ/2). Therefore, we can use Proposition 5, which states
that for all vectors rf ∈ ZmN such that ‖rf‖∞ < B?2−λ, the following distributions have statistical
distance at most 2−λ/2:

{r̃0 ←R PreImSamp(U, TU,0, B
?2−λ/2) : r̃0+rf ∈ ZmN} and {r̃f ← PreImSamp(U, TU,Urf , B

?2−λ/2) : r̃f}.

The leftmost distribution corresponds to the experimentH2.2
λ,A (with pre and post-processing), whereas

the rightmost distribution corresponds to the experimentH3
λ,A (with the same pre and post-processing).

4 Hintable Linearly Homomorphic Encryption

BDGM [BDGM20a] introduced the notion of “hintable” Linearly Homomorphic Encryption (LHE).
Roughly speaking, an LHE scheme is said to be hintable if there is a secret-key algorithm that given
a ciphertext, produces a “short” decryption hint. The latter can be used to decrypt the ciphertext
is was generated from, without the secret key. It is also possible to generate a hint from a ciphertext
only knowing the random coins used to produce that ciphertext (but without knowledge of the secret
key), and the hints generated in these two ways should be statistically close. For our purposes (and
as explained in the introduction), we will need to consider a notion of a hintable LHE satisfying a
“weak circuit privacy” notion.

Additionally, we here generalize the notion of a hintable LHE to also consider “packed” LHE,
where we can encrypt a vector of messages. Additionally, (just as we did for FHE), we will consider
LHE with two encryption modes: a “normal” and an “extra noisy” mode. Linear functions can be
evaluated on normal encryptions; furthermore one addition with a noisy encryption can be performed.
More additions with noisy encryptions would lead to ill-formed ciphertexts that cannot be decrypted
properly. (We introduce these extra generalizations to be able to obtain an instantiation based on
LWE; these extra generalizations are not needed to capture DJ).

More precisely, we consider the notion of an (`1, `2, h, α)-hintable packed LHE which enables
operating over a plaintext space of length `2(λ) vectors over ZN for some modulus |N | ≥ `1(λ),
and release hints of size h(λ). We will be interested in schemes where either `1 or `2 can be made
arbitrarily big, while keeping h the same (i.e, the hint will become significantly shorter than a
single group element, or it will be significantly smaller than the packing capacity). We consider LHE
schemes where decryption only recovers the encrypted message approximately, with some extra small
noise. The parameter α quantifies the noise magnitude.

We will present two constructions satifying the notion of a hintable packed LHE. The first one
is the Damg̊ard-Jurik [DJ01] encryption scheme which is proven secure under the DCR assumption:
this construction considers the setting where `2(λ) = 1 (i.e., there is no packing, and instead the
group elements are directly much larger than the size of the hint), and α(λ) = 0, i.e. the decryption
recovers the encrypted message perfectly. The second construction will instead be a tweaked version
of Packed-Regev [Reg05, PVW08] which is secure under the LWE assumption; in this construction,

29

`1(λ) is small (comparable to the hint size), but instead `2(λ) can be made arbitrarily large (i.e.,
we can pack a large number of elements into a ciphertext and still keep the hint size small). The
approximation parameter α(λ) = 2λ+1 (note that we will use a modulus N of exponential size in λ
for this scheme).

4.1 Definition of Hintable LHE

We proceed to the formal defnition.

Definition 4.1 (hintable LHE). For any polynomial `1, `2, h, α, an (`1, `2, h, α)-Hintable Packed
LHE comprises the following PPT algorithms:

� CRSgen(1λ): given as input the security parameter λ ∈ N, it outputs crs.

� Gen(crs): given as input crs, it outputs the tuple (pk, sk, td), where td a trapdoor that will be used

to compute decryption hints. This tuple defines the message space Z`2(λ)
N , where N ≥ 2`1(λ).

� Encpk(x): given as input the public key pk and a vector in x ∈ ZνN , it outputs a ciphertext ct.

� Enc?pk(m): given as input the public key pk and a message in m ∈ Z`2(λ)
N , it outputs a noisy

ciphertext ct?.

� Eval(pk, ct, ct?,y): given as input the public key pk, ciphertexts ct, a noisy ciphertext ct? and
a function y ∈ [−1, 1]ν`2, it outputs an evaluated ciphertext cty.

� Dec(sk, ct?): given as input the secret key and a (noisy or evaluated) ciphertext ct?, it outputs
a plaintext.

� SecHint(td, ct?): given as input the secret trapdoor td and a (noisy or evaluated) ciphertext ct?,
it outputs a decryption hint ρ.

� PubHint(pk, r): given as input the public key and some random coins r ∈ R?, where R? denotes
the randomness space of Enc?, it outputs a hint ρ.

� Rec(pk, ct?, ρ): given as input a (noisy or evaluated) ciphertext and a decryption hint ρ, it
outputs a plaintext.

These PPT algorithms additionally need to satisfy the properties listed below.

Property 4.1 (α-approximate correctness). For all λ ∈ N, all crs in the support of CRSgen(1λ), all

tuples (pk, sk, td) in the support of Gen(crs) that define the message space Z`2(λ)
N where N ≥ 2`1(λ),

all messages m ∈ Z`2(λ)
N , we have: Pr

[
ct? ← Enc?pk(m),m′ = Decsk(ct

?) : ‖m′ −m‖∞ < 2α(λ)
]
∈

1− 2−Ω(λ).

Property 4.2 (Linear Homomorphism). For all polynomials ν(·), all λ ∈ N, all crs in the support of

CRSgen(1λ), all tuples (pk, sk, td) in the support of Gen(crs) that define the message space Z`2(λ)
N , all

vectors x ∈ Zν(λ)
N , all ciphertexts ct in the support of Encpk(x), all messages m ∈ Z`2(λ)

N , all ciphertexts
ct? in the support of Enc?pk(m), all vectors y = (y1, . . . ,y`2) ∈ {0, 1}ν(λ)`2, we have: Eval(pk, ct, ct?,y)

deterministically outputs a ciphertext in the support of Enc?pk(m1 + x>y1, . . . ,m`2 + x>y`2).

30

Property 4.3 (α-approximate correctness of the secret hints). For all λ ∈ N, all crs in the support of

CRSgen(1λ), all tuples (pk, sk, td) in the support of Gen(crs) that define the message space Z`2(λ)
N , for

all messages m ∈ Z`2(λ)
N , we have: Pr

[
ct? ← Enc?pk(m), ρ ← SecHint(sk, ct?),m′ = Rec(pk, ct?, ρ) :

‖m′ −m‖∞ ≤ 2α(λ)
]
∈ 1− 2−Ω(λ).

Property 4.4 (Equivalence between public and secret hints). For all λ ∈ N, all crs in the support

of CRSgen(1λ), all messages m ∈ Z`2(λ)
N , the following distributions have statistical distance at most

2−Ω(λ):

{(pk, sk, td)← Gen(1λ), ct? ← Enc?pk(m), ρ← SecHint(sk, ct) : (pk, ct?, ρ)}
{(pk, sk, td)← Gen(1λ), r ←R R?, ρ← PubHint(pk, r), ct? = Enc?pk(m; r) : (pk, ct?, ρ)}

Property 4.5 (h-succinctness of hints). For all λ ∈ N, all crs in the support of CRSgen(1λ), all tuples

(pk, sk, td) in the support of Gen(crs) that define the message space Z`2(λ)
N , all messages x ∈ Z`2(λ)

N ,
all ciphertexts ct? in the support of Enc?pk(x), all hints ρ in the support of SecHint(sk, ct?) are of size
at most h(λ).

Property 4.6 (Weak circuit privacy). For all polynomials ν(·), all λ ∈ N, all crs in the support of

CRSgen(1λ), all tuples (pk, sk, td) in the support of Gen(crs) that define the message space Z`2(λ)
N , all

messages m ∈ Z`2N , all vectors x ∈ Zν(λ)
N , all vectors y ∈ [−1, 1]ν(λ)`2(λ), the following distributions

have statistical distance at most 2−Ω(λ):

{ct← Encpk(x), ct? ← Enc?pk(m), cty = Eval(pk, ct, ct?,y) : (pk, crs, ct, ct?, cty)}
{ct← Encpk(x), cty ← Enc?pk(µ), ct? = Eval(pk, ct, cty,−y) : (crs, pk, ct, ct?, cty)},

where µ = (m1 + x>y1, . . . ,m`2 + x>y`2) ∈ Z`2N .

Property 4.7 (Density of the noisy ciphertexts). There exists a polynomial s(·) and a poly-time
determinstic function CTsample such that the following distributions have statistical distance at most
2−Ω(λ): {

crs← CRSgen(1λ), (pk, sk, td)← Gen(crs), r←R {0, 1}s(λ) : CTsample(r)
}
.{

crs← CRSgen(1λ), (pk, sk, td)← Gen(crs),m←R Z`2(λ)
N , ct? ← Enc?pk(m) : ct?

}
.

In Appendix A.1, we present the DJ LHE from the DCR assumption, and show that it is a
hintable LHE. Now we present a variant of the packed Regev encryption scheme from the LWE
assumption.

4.2 Packed-Regev, a Hintable LHE from LWE

We present a packed version of Regev encryption scheme [Reg05], and demonstrate that it can be used
to satisfy our notion of a (`1, `2, h, α)-hintable packed LHE, where `1 and `2 can be any polynomial
and h(λ) is a polynomial that that is larger than `1 but is independent of `2 That is, the hint is large
in comparison to individual group elements, but we can pack in an arbitrary polynomial number of
elements and still use the same hint size. We have α(λ) = λ+ 1.

As explained in the introduction, our construction is slightly different, but similar in spirit, to
the Packed-Regev from [PVW08]. Just as in [PVW08], the idea is to individually encrypt the `2
different components of the message vector but reusing the same randomness r (but different parts

31

of the secret key) for the components. In contrast to [PVW08], as we do not want the length of the
randomness to grow with `2, to prove security of the scheme, we add an extra smudging noise term
e′ to each encrypted component.

The hint for an encrypted message is a short pre-image of the ciphertext hear Ar, where r is the
randomness of the encryption. To enable efficiently recovering this hint, we will generate the lattice
given in the public key together with a standard lattice trapdoor that enables sampling random short
pre-images as in [Ajt96, GPV08, AP09, MP12].

To satisfy the properties of density and weak circuit privacy, we will rely on a extra noisy Packed-
Regev encryption which proceeds just like the normal one but uses a much larger amount of ran-
domness (so that it covers the whole set of strings for density, and so that it smudges the noises of
evaluated ciphertexts for weak circuit privacy).

We will show how the Packed-Regev encryption scheme satisfies our notion of a hintable packed
LHE.

Theorem 4.2. Assume (subexponential) security of the LWE assumption holds. Then, for all poly-
nomials `1, there exists some polynomial h such that for all polynomials `2, there exists a (subexpo-
nentially) secure (`1, `2, h, α)-hintable packed LHE, with α(λ) = λ+ 1.

4.2.1 Trapdoor Sampling

The Packed-Regev scheme makes use of the following lattice trapdoor mechanism: prior works
[Ajt96, GPV08, AP09, MP12] show that there exist PPT algorithms TrapGen and PreImSamp, an
ensemble {Dλ}λ∈N of efficiently sampleable distributions over Z such that the following holds.

• TrapGen(1λ, N, d):

Given as input the security parameter λ ∈ N, a modulus N ∈ N, a dimension d ∈ N, it outputs
(A, TA), where A ∈ Zd×mN , m ∈ Θ(d log(N)) and TA is a trapdoor. The matrix A is statistically
close to uniform, that is, for all λ,N, d ∈ N, the following distributions have statistical distance at
most 2−Ω(λ): {(A, TA)← TrapGen(1λ, N, d) : A} and {A←R Zκ×mN : A}.

• PreImSamp(A, TA, t):

Given as input the matrix A, the trapdoor TA, a target vector t ∈ ZdN , it outputs r ∈ ZmN . For
all λ, d,N ∈ N, all (A, TA) in the support of TrapGen(1λ, N, d), all t ∈ ZdN , PreImSamp(A, TA, t)
outputs r ∈ ZmN such that Ar = t ∈ ZdN and ‖r‖∞ < 2λ/2 with probability 1−2−Ω(λ) over its random
coin.

We require the output r to follow some distribution that does not depend on the actual trapdoor
TA, namely, for all λ, d,N ∈ N, the following distributions have statistical distance at most 2−Ω(λ):

{(A, TA)← TrapGen(1λ, N, d), r←R Dmλ , r′ ←R PreImSamp(A, TA,Ar) : (r′,Ar)}
{(A, TA)← TrapGen(1λ, N, d), r← Dmλ : (r,Ar)}.

For our purposes, we want the distributions Dλ to be of smudging size. That is, for all polynomials
p(·), all λ, q ∈ N, the following distributions have statistical distance at most 2−Ω(λ):

{r ←R Dλ : r ∈ ZN}
{r ←R Dλ : r + p(λ) ∈ ZN}.

32

Finally, by the leftover hash lemma, since m is large enough and Dλ has enough entropy, for all
λ,N, q ∈ N, the following distributions have statistical distance at most 2−Ω(λ): {r← Dmλ , (A, TA)←
TrapGen(1λ, N, d) : (A,Ar)} and {r← Dmλ , (A, TA)← TrapGen(1λ, N, d),u←R ZdN : (A,u)}.

4.2.2 The Construction

We now proceed to describing the Packed-Regev scheme, which is parameterized by polynomials `1
and `2. We denote the scheme by P-Regev`1,`2 .

• CRSgen(1λ):

It simply outputs crs = 1λ, i.e. there is no proper crs for that scheme.

• Gen(crs):

Given as input crs = 1λ, it chooses q = {qκ}κ∈N with qκ = 2κ
c
, a Bχ-bounded ensemble χ = {χκ}κ∈N

of efficiently sampleable distributions over Z with Bχ(κ) = κ, and a polynomial κ(λ) = `1(λ)1/c,
where c ∈ (0, 1) is the constant from Definition 3.4, and N = qκ(λ). This choice of parameters
ensures that the LWE assumption implies LWE holds for q, χ (i.e. the sequence q and the poynomial
Bχ satisfy the requirement from Definition 3.4), and N = 2`1(λ). We abuse notations and write
κ = κ(λ), χ = χκ(λ) and Bχ = Bχ(κ(λ)) from here on.

Then, the algorithm samples (A, TA) ← TrapGen(1λ, N, κ), S ← χ`2×κ, E ← χ`2×m, and sets
pk = (N,A,SA + E) ∈ N× Zκ×mN × Z`2×mN , sk = S and td = TA. It outputs (pk, sk, td).

• Encpk(x ∈ ZνN):

Given the public pk, a vector x ∈ ZνN , it samples R ← [−1, 1]m×ν`2 , E′ ←R [−2λ/2, 2λ/2]`2×ν`2 and

outputs the ciphertext ct =
(
AR, (SA + E)R + E′ + x> ⊗ Id`2

)
∈ Z(κ+`2)×ν`2

N , where Id`2 ∈ Z`2×`2N

denotes the identity matrix, and x> ⊗ Id`2 =

x> 0 · · ·
0 x>

...
. . .

 ∈ Z`2×ν`2N .

• Enc?pk(m ∈ Z`2N):

Given the public pk, a message m ∈ Z`2N , it samples r? ←R Dmλ , where Dλ is the efficiently sampleable
distribution over Z related to TrapGen and PreImSamp; e? ←R [−2λ, 2λ]`2 , and outputs the noisy

ciphertext ct? =
(
Ar?, (SA + E)r? + e? + m

)
∈ Zκ+`2

N .

• Eval(pk, ct, ct?,y):

Given the public pk, ciphertext ct ∈ Z(κ+`2)×ν`2
N , noisy ciphertext ct? ∈ Zκ+`2

N and a vector y ∈
[−1, 1]ν`2 , it outputs the evaluated ciphertext ct · y + ct? ∈ Zκ+`2

N .

• SecHint(td, ct?):
Given as input the secret key sk and a (noisy or evaluated) ciphertext ct? ∈ Zκ+`2

N of the form (t, z)

where t ∈ ZκN and z ∈ Z`2N , it samples ρ← PreImSamp(A, TA, t) and outputs the hint ρ ∈ ZmN .

• PubHint(pk, r):
Given as input the public key pk and the random coins r = (r?, e?) where r? ∈ Dmλ , e? ∈ [−2λ, 2λ]`2

used to produce a noisy ciphertext, it outputs r? ∈ ZmN .

33

• Rec(pk, ct?, ρ):

Given as input the public key pk, a (noisy or evaluated) ciphertext ct? ∈ Zκ+`2
N of the form ct = (t, z)

where t ∈ ZκN , z ∈ Z`2N and a hint ρ ∈ ZmN , it outputs d = z− (SA + E)ρ ∈ Z`2N .

• Decsk(ct?):
Given as input the secret key sk and a (noisy or evaluated) ciphertext ct? = (t, z) with t ∈ ZκN ,

z ∈ Z`2N , it outputs d = z− St ∈ Z`2N .

The proof of Theorem 4.2 follows from the propositions and theorem below (which demonstrate
that Packed-Regev Scheme satisfies the desired properties of a hintable packed LHE, as well as
security).

Proposition 6 (λ+1-approximate correctness). The LHE presented above satisfies λ+1-approximate
correctness, as defined in Property 4.1.

Proof: A ciphertext ct? in the support of Enc?pk(m) is of the form ct? = (t, z) with t = Ar? ∈ Zκq
and z = (SA + E)r? + e? + m ∈ Z`2N . The vector d ∈ Z`2N output by the decryption is of the form

m+noise where noise = Er?+e?. For all E ∈ Z`2×mN such that ‖E‖∞ ≤ Bχ, with probability 1−2−Ω(λ)

over the choices of e? ← [−2λ, 2λ]`2 and r? ← Dmλ , we have ‖noise‖∞ ≤ 2λ +Bχm2λ/2 ≤ 2λ+1.

Proposition 7 (Linear Homomorphism). The LHE presented above satisfies Property 4.2.

Proof: The ciphertext produced by Encpk(x) has the form ct =
(
AR, (SA + E) R + E′ + x> ⊗ Id`2

)
∈

Z(κ+`2)×ν`2
N , and ct? = (Ar?, (SA + E) r? + e? + x?). For all y ∈ [−1, 1]ν`2 , Eval(pk, ct, ct?,y) out-

puts the evaluated ciphertext cty =
(
A(Ry +r?), (SA+E)(Ry +r?)+E′y +e?+µ

)
∈ Zκ+`2

N where

µ = (m1 + x>y1, . . . ,m`2 + x>y`2) ∈ Z`2N which is in the support of Enc?pk(µ).

Proposition 8 (λ+1-approximate correctness of the secret hints). The LHE presented above satisfies
λ+ 1-approximate correctness of the secret hints, as defined in Property 4.3.

Proof: For all messages m ∈ Z`2N , Enc?pk(m) is of the form ct? = (t, z) ∈ Zκ×`2N , where t = Ar?

and z = (SA + E) r? + e? + x?
)
. The algorithm SecHint computes ρ← PreImSamp(A, TA, t), which

is such that Aρ = t. Next, the algorithm Rec computes d = z − (SA + E) ρ = m + noise, where
noise = e? + E(r? − ρ). For all E ∈ Z`2×mN such that ‖E‖∞ ≤ Bχ, with probability 1 − 2−Ω(λ)

over the choices of e? ← [−2λ, 2λ]`2 , r? ← Dmλ and the random coins used to produce ρ, we have
‖noise‖∞ ≤ 2λ + 2mBχ2λ/2 ≤ 2λ+1.

Proposition 9 (Equivalence between public and secret hints). The LHE presented above satisfies
Property 4.4.

Proof: We aim at proving that for all λ ∈ N, all messages m ∈ Z`2N , the following distributions
have statistical distance at most 2−Ω(λ):

D0 =

{ (
pk = (A,SA + E), sk = S, td = TA

)
← Gen(1λ), r? ← Dmλ , e? ←R [−2λ, 2λ]`2

ρ← PreImSamp(A, TA,Ar?) : (Ar?, (SA + E)r? + e? + m, ρ)

}
D1 =

{ (
pk = (A,SA + E), sk = S, td = TA

)
← Gen(1λ), r? ← Dmλ

e? ←R [−2λ, 2λ]`2 : (Ar?, (SA + E)r? + e? + m, r?)

}
By Lemma 2.2 (smudging), distribution D0 has statistical distance at most 2−Ω(λ) with D′0 =

{(pk, sk) ← Gen(1λ), r? ← Dmλ , e? ←R

[
− 2λ, 2λ

]`2 , ρ ← PreImSamp(A, TA,Ar?) :
(
Ar?,SAr? +

34

e? + m, ρ
)
}. By the property of PreImSamp, D′0 has statistical distance at most 2−Ω(λ) with

D′1 = {(pk, sk) ← Gen(1λ), r? ← Dmλ , e? ←R

[
− 2λ, 2λ

]`2 :
(
Ar?,SAr? + e? + m, r?

)
}. Finally,

using smudging again, we have D′1 ≈s D1.

Proposition 10 (Succinctness of hints). The LHE presented above satisfies h(λ) = (λ/2 + 1)m
succinctness, where m = 2κ log(q) + 2λ.

Proof: With probability 1− 2−Ω(λ) over the random coins of SecHint, the hint output by SecHint
belong to [−2λ/2, 2λ/2]m.

Proposition 11 (Density of the noisy ciphertexts). The LHE presented above satisfies Property 4.7.

Proof: For all m ∈ Z`2N , a noisy ciphertext ct? ←R Enc?pk(m) is of the form ct? = (Ar?, (SA+E)r?+

e? + m) ∈ Zκ+`2
N . When m←R Z`2N , the second part of the ciphertext is uniformly random over Z`2N .

That is, for all λ ∈ N, for all pairs (pk, sk) in the support of Gen(1λ), the following distributions are
identical: {m ←R Z`2N , ct

? ← Enc?pk(m) : ct?} and {r? ←R Dmλ ,w ←R Z`2N : (Ar?,w)}. We conclude
the proof using the properties of PreImSamp, which imply that the following distributions have
statistical distance at most 2−Ω(λ): {A ←R Zκ×mN , r? ←R Dmλ : (A,Ar?)} and {A ←R Zκ×mN ,u ←R

ZκN : (A,u)}.

Proposition 12 (Weak circuit privacy). The LHE presented above satisfies Property 4.6.

Proof: For all x ∈ ZνN , y ∈ [−1, 1]ν`2 , we aim at proving the following distributions have statistical
distance at most 2−Ω(λ):

D0 =
{

(pk, sk)← Gen(1λ), ct← Encpk(x), ct? ← Enc?pk(m), cty = Eval(pk, ct, ct?,y) : (ct, ct?, cty)
}

D1 =

{
(pk, sk)← Gen(1λ), ct← Encpk(x)
cty ← Enc?pk(µ), ct? = Eval(pk, ct, cty,−y) : (ct, ct?, cty)

}
,

where µ = (m1 + x>y1, . . . ,m`2 + x>y`2) ∈ Z`2N .
In distribution D0, we have:

� ct =
(
AR, (SA + E) R + E′ + x> ⊗ Id`2

)
,

� ct? = (Ar?, (SA + E) r? + e? + x?),

� cty = (A(Ry + r?), (SA + E) (Ry + r?) + E′y + e? + µ).

We show that it has statistical distance 2−Ω(λ) from D1 by a series of claims.

Claim 1. For all y ∈ [−1, 1]ν`2 , the following distributions have statistical distance 2−Ω(λ):{
r? ←R Dmλ ,R←R [−1, 1]m×ν`2 : (R, r?, r? + Ry)

}
{

r? ←R Dmλ ,R←R [−1, 1]m×ν`2 : (R, r? −Ry, r?)
}
,

by the properties of PreImSamp.

Claim 2. For all y ∈ [−1, 1]ν`2 , the following distributions have statistical distance 2−Ω(λ):{
e? ←R

[
− 2λ, 2λ

]`2 ,E′ ← [−2λ/2, 2λ/2]`2×ν`2 : (E′, e?, e? + E′y)
}

{
e? ←R

[
− 2λ, 2λ

]`2 ,E′ ← [−2λ/2, 2λ/2]`2×ν`2 : (E′, e? −E′y, e?)
}
.

by Lemma 2.2 (smudging).
Claim 1 and Claim 2 imply the following claim.

35

Claim 3. For all y ∈ [−1, 1]ν`2 , the following distributions have statistical distance 2−Ω(λ):

D′0 =

{
e? ←R

[
− 2λ, 2λ

]`2 ,E′ ← [−2λ/2, 2λ/2]`2×ν`2 , r? ←R Dmλ
R←R [−1, 1]m×ν`2 :

(
R, r?, r? + Ry,E′, e?, e? + E′y

) }

D′1 =

{
e? ←R

[
− 2λ, 2λ

]`2 ,E′ ← [−2λ/2, 2λ/2]`2×ν`2 , r? ←R Dmλ
R←R [−1, 1]m×ν`2 :

(
R, r? −Ry, r?,E′, e? −E′y, e?

) }
.

Now we prove the following claim, that will conclude the proof of Proposition 12.

Claim 4. There exists a (possibly inefficient) simulator S that given as input v ∈
(
Zm×(ν`2+2)
N ×

Z`2×(ν`2+2)
N , outputs a tuple (ct, ct?, cty) ∈ Z(κ+`2)×ν`2

N ×
(
Zκ+`2
N

)2
, such that when S is fed with an

input from distribution D′0, it produces an output following the distribution D0, whereas when fed
with an input coming from distribution D′1, it produces an output following the distribution D1.

Given as input
(
R, r1, r2,E

′, e1, e2

)
, S computes:

� ct =
(
AR, (SA + E) R + E′ + x> ⊗ Id`2

)
,

� ct? = (Ar1, (SA + E) r1 + e1 + m),

� cty = (Ar2, (SA + E) r2 + e2 + µ).

Theorem 4.3 (Security). Assume (subexponential) security of the LWE assumption holds. Then,
for all polynomials `1 and `2, P-Regev`1,`2 is (subexponentially) secure.

Proof: In a nutshell, Regev encryption uses the LWE assumption to switch the LWE samples from
the public key SA+E to uniformly random, then use the leftover hash lemma to extract the entropy
from the randomness used to encrypt the messages. The problem here is that for succinctness, we
use small randomness, and large messages: the randomness does not hold enough entropy to hide the
messages. Instead, we use the randomness and extra smudging noise to generate fresh LWE samples,
and then hide the messages. We now provide the formal proof, which uses the hybrids experiment
listed below.

• H0
λ: as per Definition 2.8. Namely, the experiment generates (pk, sk) ← Gen(1λ) where pk =

(N,A,SA + E), sends pk to the adversary who chooses a pair (x0,x1) ∈ Zν0N × Zν1N (wlog. we can
assume ν0 = ν1 = ν). The experiment samples b ←R {0, 1} and computes the challenge ciphertext
as ct = (AR, (SA + E)R + E′ + xb ⊗ Id`2), which is sent to the adversary, who wins if it guesses b
successfully.

• H1
λ: this experiment is the same as H0

λ except the challenge ciphertext is now of the form

ct = (AR,SAR + E′ + xb ⊗ Id`2). Recall that E ←R χ`2×m where χ is Bχ-bounded, for a poly-
nomial Bχ, R ←R [−1, 1]m×`2 for a polynomial m and E′ ←R [−2λ/2, 2λ/2]`2×`2 . Thus, we can use
Lemma 2.2 (smudging) to argue that E′ + ER ≈s E′ with statistical distance 2−Ω(λ). The first
distribution corresponds to H0

λ (with pre and post-processing), whereas the second distribution cor-
responds to H1

λ (with pre and post-processing).

• H2
λ: this experiment is the same as H1

λ, except the challenge ciphertext is now of the form

ct = (U,SU + E′ + xb ⊗ Id`2), where U ←R Zκ×`2N . The fact that {H1
λ}λ∈N ≈s {H2

λ}λ∈N follows

36

readily from the leftover hash lemma, which states that the following distributions have statistical
distance 2−Ω(λ):

{A←R Zκ×mN ,R←R [−1, 1]m×`2 : (A,AR)}
{A←R Zκ×mN ,U←R Zκ×`2N : (A,U)}.

The first distribution corresponds to H1
λ (with post-processing), whereas the second distribution

corresponds to H2
λ (with the same post-processing).

• H3
λ: this experiment is the same as H2

λ, except the challenge ciphertext is now of the form

ct = (U,W), where W ←R Zκ×ν`2N , and the public key is now of the form pk = (N,A,V) where

V←R Z`2×mN . We show that {H2
λ}λ∈N ≈c {H3

λ}λ∈N. This holds by the properties of TrapGen, which
state that the matrix A is statistically close to uniform over Zκ×mN . Then, we rely on the LWE
assumption, which implies that (A,SA + E,U,SU + E′ + xb ⊗ Id`2) ≈c (A,V,U,W + xb ⊗ Id`2) ≡
(A,V,U,W), where W←R Zκ×ν`2N and V←R Z`2×mN . We conclude by noting that in the experiment
H3
λ, the adversary’s view does not depend on the random bit b.

5 Constructing XiO for Plog/poly

We present a modular construction of XiO Plog/poly from the GSW FHE scheme for circuits of
depth δ, denoted by GSWδ, for sufficiently sufficiently large δ, and any (`1, `2, h, α)-hintable packed
LHE for sufficiently small h, α and sufficiently large `1 and `2 —recall that h measures the LHE
succinctness, α quantifies the approximate correctness, while `1, `2 measure the plaintext size, or
”batching capacity” of the scheme; `1 intuitively represents how many bits can be packed in a scalar,
i.e. how large is the modulus in use, whereas `2 measures how many such scalars are recovered when
decrypting one ciphertext. As a warm up to our main theorem, we first prove the IND-security of
our XiO construction from 2-circular SRL security of the GSW scheme and the hintable LHE, where
2-circular security is defined similarly as 1-circular security. Later, we improve this result by showing
that 1-circular SRL security of the GSW scheme suffices.

Outline. In the rest of this section, we abstract out 2 additional properties of the GSW FHE that
we will rely on to enable a modular proof. This is done in Section 5.1. Then, we present our XiO
construction in Section 5.2. Afterwards, in Section 5.3 we define the notion of 2-circular SRL security
and prove our first main theorem, namely, the IND-security of our XiO assuming the 2-circular SRL
security of the GSW scheme and the hintable LHE. Then, in Section 5.4, we show that 1-circular SRL
security of GSW is sufficient to prove the security of our XiO. Finally, we state our main theorem in
Section 5.5.

5.1 Additional properties for GSW

Weak Circuit Privacy of GSWδ. As mentionned in the introduction, we will rely on the fact
that the GSW encryption scheme also satisfies a notion of “weak circuit privacy” similar to the one
defined for LHE. More precisely, we show that GSW satisfies a property that involves a public-key
algorithm that re-randomizes evaluated ciphertext so that they look like fresh ciphertexts from the
support of the noise encryption algorithm Enc?. Namely, we show that there exists a PPT algorithm
ReRand that takes as input the public key pk, an evaluated ciphertext ct, some random coins r? ∈ R?,
and outputs an evaluated ciphertext ct computed as described below.

37

• ReRand(pk, ct; r?):

Given pk = (B,U,G), ct ∈ {0, 1}w and r? ←R [−B?, B?]m, it computes ct′ ∈ Zκ+1
N whose binary

decomposition is ct, computes c̃t = ct′ + Ur? ∈ Zκ+1
N , and outputs the re-randomized ciphertext

BD(c̃t) ∈ {0, 1}w.

Theorem 5.1 (weak circuit privacy). For all polynomials ν, `, δ, all λ ∈ N, all crs containing a
modulus N ∈ N such that N ≥ 22λB, where B is an upper-bound on the noise obtained from
homomorphically evaluating circuits of depth at most δ(λ), all pairs (pk, sk) in the support of Gen(crs),
all messages µ ∈ {0, 1}ν(λ), all depth-δ(λ) circuits f1, . . . , f`(λ) : {0, 1}ν(λ) → ZN , the following

distributions have statistical distance at most 2−Ω(λ):

D0 :

{
ct← Encpk(µ),∀j ∈ [`(λ)], ctfj = Eval′(pk, fj , 0, ct), r

?
j ←R R?

ct?fj = ReRand(pk, ctfj ; r
?) :

(
ct, (r?j , ct

?
fj

)j∈[`(λ)]

) }

D1 :

{
r ←R Rν(λ), ct = Encpk(µ; r),∀j ∈ [`(λ)], r?j ←R R?, ct?fj = Enc?pk(fj(µ); r?j)

rfj = Evalrand (pk, fj , r, µ) :
(
ct, (r?j − rfj , ct

?
fj

)j∈[`(λ)]

) }

Proof: By batch correctness of the scheme, for all j ∈ [`(λ)], the evaluated ciphertext is of the
form ctfj =

(
Arfj , (s

>A + e>)rfj + fj(µ)
)
∈ Zκ+1

N , and the re-randomized ciphertext is of the form

ct?fj =
(
A(rfj +r?j), (s

>A+e>)(rfj +r?j)+fj(µ)
)
∈ Zκ+1

N , where ‖rfj‖∞ < (w+1)δdlog(N)e = 2−λB?

and r?j ←R [−B?, B?]m. By Lemma 2.2 (smudging), the following distributions have statistical

distance at most 2−λ: (
r?j
)
j∈[`]
≈s
(
r?j − rfj

)
j∈[`]

.

The leftmost distribution corresponds to D0 (with pre and post-processing), whereas the rightmost
distribution corresponds to D1 (with pre and post-processing).

Proposition 13 (B(2λ+1)-approximate correctness of refreshed evaluated ciphertexts). For all poly-
nomials ν, δ, all λ ∈ N, all crs containing a large enough modulus N ∈ N, all messages µ ∈ {0, 1}ν(λ),

all circuits f : {0, 1}ν(λ) → ZN of depth at most δ(λ), we have: Pr
[
(pk, sk) ← Gen(crs), ct ←

Encpk(µ), ctf = Eval(pk, f, 0, ct), ct′f ← ReRand(pk, ctf) : |sk>ct′f − f(µ)| ≤ B(2λ + 1)
]
∈ 1− 2−Ω(λ).

Proof: The ciphertext ctf is the binary decomposition of
(
A(r? + rf), (s>A + e>)(r? + rf) + f(µ)

)
∈

Zκ+1
N , where |e>rf | < B by batch correctness and |e>r?| < BχB

?m = 2λB with probability 1−2−Ω(λ)

over the choices of e← χm.

5.2 XiO Construction

We directly dive into the formal description of the construction, see the introduction for a detailed
overview.

We present a modular construction of XiO for the class of circuits Clog(n),s,d for polynomials n, s, d,
from the following building blocks:

� the GSW FHE scheme for depth δ circuits, denoted by GSWδ = (CRSgen,Gen,Enc,Enc?,Dec,
Eval,Eval′,Evalrand,ReRand), presented in Section 3.2.2. The depth δ is chosen sufficiently large
to handle the homomorphic evaluations of the circuits described below.

38

� an (`1, `2, h, α)-Hintable Packed LHE, denoted by LHEb,n,ε = (Gen,Enc,Enc
?
,Dec,Eval, SecHint,

PubHint,Rec,VerKey) where h is independent of n to ensure succinctness; `1(λ) ≥ b(λ) + 2λ,
where 2b is a bound on the noise obtained when FHE evaluating circuits of depth at most
δ12; moreover

(
`1(λ) − b(λ) − 2λ

)
· `2(λ) ≥ nε(λ), where ε ∈ (0, 1) is defined below (see the

paragraph about succinctness); finally α(λ) ≤ λ+ 1.

Notations. For every program Π with log(n) bits inputs, every ε ∈ (0, 1), the truth table can be
written as (Πi)i∈[n1−ε], where each chunk Πi contains nε bits. The chunks Πi themselves can be
subdivided into sub-chunks Πi = (Πi,j)j∈[`2], where each sub-chunk Πi,j contains nε/`2 bits. For all
i ∈ [n1−ε] and j ∈ [`2], we denote by Ci,j the circuit that takes as input a program Π of size s and
outputs Πi,j .

The construction: We proceed to the construction.

• GenObf(1
λ):

Set the parameters:

� Choose a constant 0 < ε < 1 that is small enough so as to ensure succinctness of the scheme
(see paragraph succinctness below).

� Let |ct|(·), |r?|(·) be polynomials such that for every λ ∈ N, every (pk, sk) in the support of
Gen(1λ) that defines the message space Z`2N and the noisy randomness space R?, every message

m ∈ Z`2N , every ciphertext in the support of Encpk(m) has a bit size at most |ct|(λ) and every
r? ∈ R? has bit size at most |r?|(λ).

� FHE.PubCoin←R {0, 1}n
1−ε·`2·|r?|, LHE.PubCoin←R {0, 1}n

1−ε·|ct|.

Return pp = (FHE.PubCoin, LHE.PubCoin).

• Obf(pp, 1n,Π):

Sample the following parameters:

�

(
pk, sk

)
← Gen(1λ) that defines the message space Z`2N .

� (pk, sk)← Gen(pk) that defines the noisy randomness spaceR?, where sk ∈ ZwN , and pk contains
the noise bound B; we write b = dlog(B)e.

Compute the following ciphertexts:

� ct1 ← Encpk (Π).

� ct2 ← Encpk(sk).

� ct← Encpk(sk).

For all i ∈ [n1−ε], j ∈ [`2], compute the following:

� cti,j = Eval′ (pk, Ci,j , b+ 2λ, ct1) ∈ {0, 1}w, where the circuit Ci,j is defined above. The homo-
morphic evaluation is performed with scaling factor b+ 2λ.

12To make sure these parameters are instantiable, we require that LHE decryption is of poly-logarithmic depth,
which ensures that δ and therefore B only depend poly-logarithmically on `1.

39

� ctMSB,i,j = Eval′(pk, fi,j , 0, ct2) ∈ {0, 1}w, where the circuit fi,j takes as input a bit string

a ∈ {0, 1}|sk|. It checks that a is the secret key associated with pk, that is, it runs VerKey(pk,a).
If the latter outputs 0, fi,j outputs 0. Otherwise, it uses a as an LHE secret key to compute
vi = Deca(LHE.PubCoini), where LHE.PubCoini is interpreted as an LHE ciphertext Encpk(ui),

with ui ∈ Z`2N , by density of the LHE ciphertext space. Then it computes vi,j ∈ ZN , the j’th

coordinate of vi ∈ Z`2N and outputs the most significant bits of vi,j , of the form: MSB(vi,j) =

vi,j − LSB(vi,j) ∈ Z`2N , where the (shifted) least significant bits are of the form: LSB(vi,j) = vi,j
mod B22λ −B22λ/2 ∈ ZN . The homomorphic evaluation is performed with scaling factor 1.

� Parse FHE.PubCoini,j = r?i,j ∈ R? and compute ct′MSB,i,j = ReRand(pk, ctMSB,i,j ; r
?
i,j) ∈ Zκ+1

N .

� Compute cti = (cti,j)j∈[`2] ∈ {0, 1}w`2 , ct′MSB,i = (ct′MSB,i,j)j∈[`2] ∈ {0, 1}w`2 .

� Compute cti = Eval
(
pk, ct, LHE.PubCoini, cti − ct′MSB,i

)
.

� Compute ρi ← SecHint(sk, cti).

Return Π̃ =
(
pk, pk, ct1, ct2, ct, {ρi}i∈[n1−ε]

)
.

• Eval(pp, Π̃,x):

� Let i ∈ [n1−ε] such that Π(x) belongs to the i’th chunk of the truth table of Π. Compute cti
as described above.

� Recover mi ← Rec(pk, cti, ρi).

� Compute m′i = b2−2λ/B ·mie, which contains Π(x).

We now proceed to prove Theorem 5.3.

Succinctness. By h-succinctness of LHEb,n,ε, for all i ∈ [n1−ε], we have |ρi| ≤ h(λ) for a poly-

nomial h that is independent of n. The rest of the obfuscated circuit Π̃ is of size p(λ, nε, d), for
a polynomial p that is independent of n and ε. Thus, there exists a constant c ∈ N (independent
of ε) and a polynomial q (independent of n) such that

∣∣Π̃∣∣ ∈ ncε(λ) · q(λ, d) + n1−ε(λ) · h(λ). For
succinctness, we pick an appropriately small 0 < ε < 1/c.

Correctness.

� By the batch correctness of the GSW scheme (Proposition 1), for all i ∈ [n1−ε] and j ∈ [`2],
we have:

sk>cti,j = 22λB ·Πi,j + noisei,j ∈ ZN ,
where |noisei,j | < B.

� By the density of the noisy ciphertexts of LHEb,n,ε, for all i ∈ [n1−ε], we have LHE.PubCoini =

Encpk(ui) with ui ∈ Z`2N .

� By the (2λ+1)B-approximate correctness of refreshed evaluated ciphertexts of the GSW scheme
(Proposition 13), for all i ∈ [n1−ε] and j ∈ [`2], we have:

sk>ct′MSB,i,j = MSB(ui,j) + noiseMSB,i,j ∈ ZN ,

where |noiseMSB,i,j | < (2λ + 1)B.

40

� By linear homomorphism of LHEb,n,ε (Property 4.2), the ciphertext cti is in the support of
Encpk(mi), mi = (mi,j)j∈[`2] of the form:

mi,j = B22λ ·Πi,j + LSB(ui,j) + noisei,j + noiseMSB,i,j ∈ ZN .

� By α-correctness of the secret hints of LHEb,n,ε (Property 4.3), the evaluator of the obfuscated

circuit recovers the message mi ∈ Z`2N such that ‖mi −mi‖∞ < 2α(λ). That is, for all j ∈ [`2],
mi,j = mi,j + noisei,j ∈ ZN , where |noisei,j | < 2α(λ).

� With probability 1− 2−Ω(λ) over the choice of ui ←R Z`2N , we have for all j ∈ [`2], |LSB(ui,j) +
noisei,j + noiseMSB,i + noisei,j | < B22λ/2. Thus, m′i,j =

⌊
mi,j · 2−2λ/B

⌉
= Πi,j for all j ∈ [`2],

and the evaluator outputs Π(x).

5.3 IND Security from 2CIRC

2-Circular Security. We define the notion of 2-circular security w.r.t two encryption schemes
PKE ,PKE similarly than for 1-circular security (see Definition 2.8). This notion will not be used
for our final theorem, but will serve to state some intermediary results. For our purposes, the key
generation algorithm of PKE will be allowed to depend on the public key and the secret of PKE (so
they can operate over the same field). To enables this, we make use of the CRS: the CRS of PKE will
be set to the public key and the secret key of PKE . 2-circular security requires indistinguishability
of encryptions using PKE of any message m0,m1 in the presence of encrypted key cycle w.r.t. PKE
and PKE , and some randomness leakage.

Definition 5.2 (O-leakage resilient 2-circular security). We say that public-key encryption schemes
PKE = (CRSgen,Gen,Enc,Dec) and PKE = (CRSgen,Gen,Enc,Dec) are O-leakage resilient 2-
circular secure if for all stateful nuPPT adversaries A, there exists some negligible function µ(·)
such that for all λ ∈ N, Pr[ExpPKE,PKEλ,A = 1] ≤ 1/2 + µ(λ), where the experiment ExpPKE,PKEλ,A is
defined as follows:

ExpPKE,PKEλ,A =


crs← CRSgen(1λ), (pk, sk)← Gen(crs), crs = (pk, sk), (pk, sk)← Gen(crs)

(m0,m1)← A(pk, pk), b← {0, 1},m? = sk‖mb, r←R {0, 1}∞, ct = Encpk(m
?; r)

ct← Encpk(sk), b′ ← AO(m?,r)(ct, ct)

Return 1 if |m0| = |m1|, b′ = b and O did not return ⊥; 0 otherwise.


We say that an FHE scheme FHE and a PKE scheme PKE are 2-circular SRL secure if they are
OSRL-leakage resilient 2-circular secure, where the oracle OSRL is given in Definition 3.3.

We now state our theorem.

Theorem 5.3. Assume that for all polynomials δ, b, all constants ε ∈ (0, 1), there exists a polynomial
h s.t. for all polynomials n, there exist polynomials `1, `2, α and an (`1, `2, h, α)-hintable packed LHE
denoted by LHEb,ε,n s.t. for all λ ∈ N:

� α(λ) ≤ λ+ 1

� `1(λ) ≥ b(λ)

�

(
`1(λ)− b(λ)

)
· `2(λ) > n(λ)ε

41

� 2-circular SRL security (resp. subexponential 2-circular SRL security) holds w.r.t. LHEb,ε,n
and GSWδ.

Then XiO (resp. subexponentially secure XiO) for Plog/poly exists.

Proof: We now prove that the XiO scheme presented in Section 5 is IND-secure, provided 2-circular
SRL security (as per Definition 3.3) holds w.r.t. GSWδ and LHEb,n,ε.

We proceed via a hybrid argument using the experiments described below for all b ∈ {0, 1} and
all λ ∈ N.

• Hb.0λ : this is the experiment from Definition 2.3. For completeness, we describe it here.

� Generation of pp: for all i ∈ [n1−ε], LHE.PubCoini ←R {0, 1}|ct|, for all j ∈ [`2], FHE.PubCoini,j ←R

R?, whereR? denotes the noisy randomness space of FHE . Return pp =
(

(LHE.PubCoini)i∈[n1−ε],

(FHE.PubCoini,j)i∈[n1−ε],j∈[`2]

)
.

� Generation of Π̃b: (pk, sk) ← Gen(1λ), crs = (pk, sk), (pk, sk) ← Gen(crs), ct1 ← Encpk (Π),
ct2 ← Encpk(sk), ct← Encpk(sk). For all i ∈ [n1−ε], j ∈ [`2], compute the following:

– cti,j = Eval′(pk, Ci,j , b+ 2λ, ct1) ∈ {0, 1}w;

– ctMSB,i,j = Eval′(pk, fi,j , 0, ct2) ∈ {0, 1}w;

– Parse FHE.PubCoini,j = r?i,j ∈ R? and compute ct′MSB,i,j = ReRand(pk, ctMSB,i,j ; r
?
i,j) ∈

{0, 1}w.

– Compute cti = (cti,j)j∈[`2] ∈ {0, 1}w`2 , ct′MSB,i = (ct′MSB,i,j)j∈[`2] ∈ {0, 1}w`2 .

– cti = Eval(pk, ct, LHE.PubCoini, cti − ct′MSB,i);

– ρi ← SecHint(sk, cti).

Return Π̃b =
(
pk, pk, ct1, ct2, ct, (ρi)i∈[n1−ε]

)
.

• Hb.1λ : the experiment samples LHE.PubCoin as in Hb.0λ , but does not sample FHE.PubCoin just yet; it

then generates Π̃b as in Hb.0λ up until the point that the ctMSB,i,j get re-randomized into ct′MSB,i,j via
ReRand. Next, instead of performing the re-randomization, it samples ct′MSB,i,j as a fresh extra noisy
encryption of MSB(ui,j) using randomness r?i,j ←R R?, and setting FHE.PubCoini,j to be r?i,j − rfi,j ,
where rfi,j denotes the evaluated randomness computed via Evalrand. Afterwards, the experiment

continues exactly the same way as in the experiment Hb.0λ .
We show that for all b ∈ {0, 1}, we have:

{Hb.0λ }λ∈N ≈s {Hb.1λ }λ∈N,

using the weak circuit privacy of FHE (Theorem 5.1).
The latter states that for all λ ∈ N, all (pk, sk) in the support of Gen(1λ), all (pk, sk) in the

support of Gen(crs) with crs = (pk, sk), for all depth d-circuits and in particular the functions fi,j

42

defined previously, these two distributions have statistical distance at most 2−Ω(λ):

D0
λ :


r ←R

(
[−1, 1]m×w

)|sk|
, ct = Encpk(sk; r),∀i ∈ [n1−ε], j ∈ [`2], ctfi,j = Eval′(pk, fi,j , 0, ct)

r?i,j ←R R?, ct?fi,j = ReRand(pk, ctfi,j ; r
?
i,j) :

(
pk, pk, ct,

(
r?i,j , ct

?
fi,j

)
i∈[n1−ε],j∈[`2]

) 
D1
λ :


r ←R

(
[−1, 1]m×w

)|sk|
, ct = Encpk(sk; r),∀i ∈ [n1−ε], j ∈ [`2], r?i,j ←R R?

ct?fi,j = Enc?pk(MSB(ui,j); r
?
i,j)

rfi,j = Evalrand
(
pk, fi,j , r, sk

)
:

(
pk, pk, ct,

(
r?i,j − rfi,j , ct

?
fi,j

)
i∈[n1−ε],j∈[`2]

)
 .

We design an inefficient simulator S that given a tuple
(
pk, pk, ct, (ri,j , cti,j)i∈[n1−ε],j∈[`2]

)
, sim-

ulates the adversary view in the XiO security experiment. That is, we show that when fed with
an input distributed according to D0

λ, S simulates the experiment Hb.0λ , whereas it simulates the
experiment Hb.1λ when fed with an input distributed according to D1

λ.
Given

(
pk, pk, ct, (ri,j , ct

?
fi,j

)i∈[n1−ε],j∈[`2]

)
, S (inefficiently) recovers sk from pk, sk from pk, and the

randomness r from ct (more precisely S samples some uniformly random sk, sk, r among those that
match pk, pk and ct). It samples LHE.PubCoin←R {0, 1}n

1−ε·|ct|, and for all i ∈ [n1−ε], j ∈ [`2], sets
FHE.PubCoini,j = ri,j , and pp = (LHE.PubCoin, (FHE.PubCoini,j)i,j). It computes ct1 ← Encpk(Πb),
ct← Encpk(sk).

For all i ∈ [n1−ε], j ∈ [`2], S computes the following:

� cti,j = Eval′(pk, Ci,j , b+ 2λ, ct1) ∈ {0, 1}w;

� ct′MSB,i,j = cti,j ∈ {0, 1}w.

� Compute cti = (cti,j)j∈[`2] ∈ {0, 1}w`2 , ct′MSB,i = (ct′MSB,i,j)j∈[`2] ∈ {0, 1}w`2 .

� cti = Eval(pk, ct, LHE.PubCoini, cti − ct′MSB,i);

� ρi ← SecHint(sk, cti).

The simulator sets Π̃b =
(
pk, pk, ct1, ct2, ct, (ρi)i∈[n1−ε]

)
, and returns (pp, Π̃b). It is clear from the

description of the simulator S that when the latter is fed with an input distributed according to D0
λ,

it simulates the experiment Hb.0λ , whereas it simulates the experiment Hb.1λ when fed with an input
distributed according to D1

λ.

• Hb.2λ : this experiment is the same as Hb.1λ , except that instead of sampling LHE.PubCoini as ran-
dom strings, they are sampled as fresh LHE ciphertexts of random plaintexts, that is, of the form
LHE.PubCoini ← Encpk(ui) for ui ←R Z`2N . By density of the ciphertexts of LHE Property 4.7, we
have:

{Hb.1λ }λ∈N ≈s {Hb.2λ }λ∈N.

• Hb.3λ : this experiment is the same asHb.2λ , except the ciphertexts cti are generated as fresh noisy LHE

encryptions of the messages mi = sk>(cti − ct′MSB,i) + ui ∈ Z`2N , and the LHE.PubCoini are instead

computed homomorphically by subtracting the LHE encryption of the message m̃i = sk>(cti +
ct′MSB,i) ∈ Z`2N from the fresh noisy encryption of mi. That is, for all i ∈ [n1−ε], cti ← Enc

?
pk(mi),

LHE.PubCoini = Eval
(
pk, ct, cti,−cti + ct′MSB,i

)
.

43

Note that it is possible to define this hybrid since ct′MSB,i remains exactly the same no matter

what LHE.PubCoini is. This was not true in Hb.0λ , and we introduced Hb.1λ to break this dependency.
We show that for all b ∈ {0, 1}, we have:

{Hb.2λ }λ∈N ≈s {Hb.3λ }λ∈N,

using the weak circuit privacy property of LHEb,n,ε (Property 4.6).
The latter states that for all λ ∈ N, all (pk, sk) in the support of Gen(1λ), all vectors x ∈ ZwN and

in particular x = sk ∈ ZwN , all ui ∈ Z`2N , all functions yi = (yi1, . . . ,y
i
`2

) ∈ [−1, 1]w`2 and in particular

the vector cti − ct′MSB,i ∈ [−1, 1]w`2 defined previously for all i ∈ [n1−ε], the following distributions

have statistical distance 2−Ω(λ):

D0
λ =

{
ct← Encpk(sk), ∀i ∈ [n1−ε], c̃ti ← Enc

?
pk(ui)

cti = Eval(pk, ct, c̃ti, cti − ct′MSB,i) :
(
pk, ct, (c̃ti, cti)i∈[n1−ε]

) }

D1
λ =

{
ct← Encpk(sk), ∀i ∈ [n1−ε], cti ← Enc

?
pk(mi)

c̃ti = Eval(pk, ct, cti,−cti + ct′MSB,i) :
(
pk, ct, (c̃ti, cti)i∈[n1−ε]

) } ,
where for all i ∈ [n1−ε], mi = sk>(cti − ct′MSB,i) + ui ∈ Z`2N .

We design an inefficient simulator S that given a tuple
(
pk, ct, (c̃ti, cti)i∈[n1−ε]

)
, simulates the

adversary view in the XiO security experiment. That is, we show that when fed with an input
distributed according to D0

λ, S simulates the experiment Hb.2λ , whereas it simulates the experiment
Hb.3λ when fed with an input distributed according to D1

λ.
Given

(
pk, ct, (c̃ti, cti)i∈[n1−ε]

)
, S (inefficiently) recovers sk from pk, sk from ct, pk from sk and ui

from c̃ti for all i ∈ [n1−ε]. It generates ct1 ← Encpk(Πb), r ←R

(
[−1, 1]m×w

)|sk|
, ct2 = Encpk(sk; r),

for all i ∈ [n1−ε], j ∈ [`2], cti,j = Eval′(pk, Ci,j , b + 2λ, ct1), r?i,j ←R R?, where R? denotes the

noisy randomness space of FHEd, ct′MSB,i,j = Enc?pk(MSB(ui,j); r
?
i,j), rfi,j = Evalrand(pk, fi,j , r, sk),

FHE.PubCoini,j = r?i,j − rfi,j , ρi ← SecHint(sk, cti), LHE.PubCoini = c̃ti.

It returns pp =
(
(LHE.PubCoini)i, (FHE.PubCoini,j)i,j

)
and Π̃b =

(
pk, pk, ct1, ct2, ct, (ρi)i∈[n1−ε]

)
.

It is clear from the description of the simulator S that when the latter is fed with an input distributed
according to D0

λ, it simulates Hb.2λ , whereas it simulates Hb.3λ when fed with an input distributed ac-
cording to D1

λ.

• Hb.4λ : it is the same experiment as Hb.3λ , except the hints ρi for i ∈ [n1−ε] are computed using

PubHint(pk, ri), where ri denotes the randomness used to produce the ciphertext cti; instead of
SecHint(sk, cti). By Property 4.4 of the LHE, we have {Hb.3λ }λ∈N ≈s {Hb.4λ }λ∈N. Note that in the
experiment Hb.4λ , we no longer use the LHE secret key sk.

• Hb.5λ : it is the same experiment as Hb.4λ , except that the ciphertexts cti are generated as a fresh

encryption of a message mi ∈ Z`2N of the form (mi,1, . . . ,mi,`2) where for all j ∈ [`2], we have
mi,j = B22λ ·Πb

i,j + LSB(ui,j) ∈ ZN . Recall that LSB(ui,j) = ui,j mod B22λ−B22λ/2 ∈ ZN . This is

instead of having mi,j = sk>(cti,j+ct′MSB,i,j)+ui,j = B22λ ·Πb
i,j+LSB(ui,j)+noisei,j+noiseMSB,i ∈ ZN ,

where noisei,j = e>rCi,j ∈ ZN and noiseMSB,i = e>r?i,j ∈ ZN , rCi,j is the randomness obtained when
evaluating the circuit Ci,j on the FHE ciphertext ct1, r?i,j ←R R?, and e ← χm is used to generate
pk.

Note that noisei,j and noiseMSB,i are deterministic functions of pk, r?i,j and the randomness r ∈(
[−1, 1]m×w

)s
used to produce ct1. In particular, they are independent of LSB(ui,j).

44

We show that {Hb.3λ }λ∈N ≈s {Hb.4λ }λ∈N. To do so, for all λ ∈ N, we exhibit two distributions D0
λ

and D1
λ, together with a (possibly inefficient) simulator S, such that (1) D0

λ and D1
λ have statistical

distance 2−Ω(λ), and (2) for all β ∈ {0, 1}, when fed with an input from distribution Dβλ , S produces

the adversary view as in the experiment Hb.4+β
λ .

The distributions are defined as follows (the differences are highlighted in red):

D0
λ =


(pk, sk)← Gen(crs), r ←R

(
[−1, 1]m×w

)s
,∀i ∈ [n1−ε], j ∈ [`2], r?i,j ←R R?

γi,j ←R

[
−B22λ/2 + 1, B22λ/2

]
:

(
pk, r,

(
γi,j , r

?
i,j

)
i∈[n1−ε],j∈[`2]

) 

D1
λ =


(pk, sk)← Gen(crs), r ←R

(
[−1, 1]m×w

)s
, ∀i ∈ [n1−ε], j ∈ [`2], r?i,j ←R R?

γi,j ←R

[
−B22λ/2 + 1, B22λ/2

]
:

(
pk, r,

(
γi,j + noisei,j + noiseMSB,i,j , r

?
i,j

)
i∈[n1−ε],j∈[`2]

)  ,

where noisei,j noiseMSB,i,j are functions of pk, r and r?i,j defined as below, namely, noisei,j = e>rCi,j
and noiseMSB,i,j = e>r?i,j .

We show that these distributions have statistical distance 2−Ω(λ). The only difference is that in
D1
λ, an extra noise noisei,j +noiseMSB,i,j is added to the random value si,j . This noise is small, indeed
|noisei,j + noiseMSB,i,j | ≤ B(2λ + 1) (see the correctness section for more details). Moreover, γi,j is
sampled uniformly at random over

[
−B22λ/2+1, B22λ/2

]
, independently of the other values output

by the distributions. Thus, we can use the value γi,j to smudge the noise noisei,j +noiseMSB,i,j . That
is, by Lemma 2.2 (smudging), the statistical distance of the two distributions is 2−Ω(λ).

Now, we proceed to describe the simulator S. Given as input the tuple
(
pk, r, (vi,j , r

?
i,j)i∈[n1−ε],j∈[`2]

)
,

the simulator (inefficiently) recovers sk from pk, samples (pk, sk)← Gen(1λ), generates ct← Encpk(sk),

ct1 = Encpk(Πb; r). It samples r′ ←R

(
[−1, 1]m×w

)|sk|
, computes ct2 = Encpk

(
sk; r′

)
.

For all i ∈ [n1−ε], j ∈ [`2], samples ωi,j ←R ZN/(22λB), and sets mi,j = B22λ ·Πb
i,j+vi,j+ωi,j ∈ ZN .

Note that (γi,j , ωi,j) is identically distributed to (LSB(ui,j),MSB(ui,j)) for ui,j ←R ZN .

It sets mi = (mi,1, . . . ,mi,`2) ∈ Z`2N , samples ri ←R R, where R denotes the randomness space of
Enc, computes cti = Encpk (mi; ri) and ρi ← PubHint(pk, ri). It computes ct′MSB,i,j = Enc?pk(ωi,j ; r

?
i,j),

cti,j = Eval′(pk, Ci,j , b + 2λ, ct1), cti = (cti,j)j∈[`2] ∈ {0, 1}w`2 , ct′MSB,i = (ct′MSB,i,j)j∈[`2] ∈ {0, 1}w`2 ,

and LHE.PubCoini = Eval(pk, ct, cti,−cti + ct′MSB,i). It computes rfi,j = Evalrand(pk, fi,j , ct2) where
the functions fi,j are defined as before, and sets FHE.PubCoini,j = r?i,j − rfi,j ∈ ZmN .

It returns pp = (LHE.PubCoini,FHE.PubCoini,j)i∈[n1−ε], and Π̃b =
(
pk, pk, ct1, ct2, ct, (ρi)i∈[n1−ε]

)
.

When S is fed with an input distributed according to D0
λ, it simulates the experiment Hb.4λ , whereas

it simulates the experiment Hb.5λ when fed with distribution D1
λ. Thus, we have:

{Hb.4λ }λ∈N ≈s {Hb.5λ }λ∈N.

• {H0.5
λ }λ∈N ≈c {H1.5

λ }λ∈N: To complete the proof, we show that {H0.5
λ }λ∈N is computationally

indistinguishable from {H1.5
λ }λ∈N. These two ensembles are the same except the former obfuscates

the program Π0, whereas the latter obfuscates Π1. Note that other than the encrypted key cycle,
we never use the FHE secret key, and due to hybrid {Hb.4λ }λ∈N, we no longer use the LHE secret
key. The coins FHE.PubCoin exactly correspond to an SRL leakage on the FHE ciphertext ct2 (and
note that in the experiment we do know the output αi,j of the function fi,j that is applied to the
plaintexts encrypted in ct1, ct2—namely, it is MSB(ui,j) where ui,j is a random element of ZN selected
in the experiment, see Hybrid Hb.2λ). Thus, (subexponential) indistinguishability of {H0.5

λ }λ∈N and
{H1.5

λ }λ∈N follows from (subexponential) 2-circular SRL-security of FHEd and LHEb,n,ε.

45

Namely, for any nuPPT (resp. subexponential) distinguisher A, we show there exists a nuPPT
(resp. subexponential) reduction B such that for all λ ∈ N, we have:

Pr
[
b←R {0, 1}, (pp, Π̃b)← Hb.5λ : A(pp, Π̃b) = b

]
≤ Pr

[
Exp

FHEd,LHEb,n,ε
λ,B = 1

]
+ 2−Ω(λ),

where the experiment Exp
FHEd,LHEb,n,ε
λ,B is described in Definition 5.2.

We now proceed to describe the reduction B. Given the public keys pk, pk, B sends the pair
(Π0,Π1) to the 2-circular SRL security experiment, upon which it receives the ciphertexts ct =
(ct1‖ct2) and ct, where ct1 encrypts Π0 or Π1, ct2 encrypts sk, and ct encrypts sk. It samples
ui,j ←R ZN for all i ∈ [n1−ε], j ∈ [`2], and generates the following:

� Generation of pp:

– To generate LHE.PubCoini:

* It samples ri ←R R, where R denotes the randomness space of Enc, and computes
cti = Encpk(mi; ri), where for all j ∈ [`2], the j’th coordinate of mi is of the form:

mi,j = B22λ ·Πb
i,j + LSB(ui,j) ∈ ZN . Note that this does not require to know the bit

b, since Π0
i,j = Π1

i,j for all i ∈ [n1−ε], j ∈ [`2], because the programs Π0 and Π1 are
functionally equivalent.

* It computes ρi ← PubHint(pk, ri).

* It computes cti,j = Eval′(pk, Ci,j , b+ 2λ, ct1).

* Then, it queries its OSRL oracle, to obtain a fresh, extra noisy encryption Enc?pk(0; r?i,j).
It leaves the oracle OSRL pending.

* It adds the vector (0,MSB(ui,j)) ∈ Zκ+1
N to the vector whose binary decomposition

is Enc?pk(0; r?i,j), which yields a vector ct?i,j ∈ Zκ+1
N whose binary decomposition is

Enc?pk(MSB(ui,j); r
?
i,j). Then, it computes ct′MSB,i,j = BD(ct?i,j) ∈ {0, 1}w.

* It computes cti = (cti,j)j∈[`2] ∈ {0, 1}w`2 and ct′MSB,i = (ct′MSB,i,j)j∈[`2] ∈ {0, 1}w`2 .

* Finally, it computes LHE.PubCoini = Eval(pk, ct, cti,−cti − ct′MSB,i).

– To generate FHE.PubCoini,j : it answers the pending oracle OSRL with the function fi,j
and the value α = MSB(ui,j). With probability 1 − 2Ω(λ) over the random coins used
to produce The oracle OSRL returns the leakage r?i,j − rfi,j ∈ R?. The reduction sets
FHE.PubCoini,j = r?i,j − rfi,j .

It sets pp =
(
(LHE.PubCoini)i∈[n1−ε], (FHE.PubCoini,j)i∈[n1−ε],j∈[`2]

)
.

� Generation of Π̃: it sets (pk, pk, ct, ct, (ρi)i∈[n1−ε]) computed as described above.

The reduction B sends (pp, Π̃) to the distinguisher A, which outputs a bit b′. Finally, B outputs
the bit b′. When ct1 encrypts Π0, the reduction simulates the experiment H0.5

λ to A, whereas it

simulates the experiment H1.5
λ when ct1 encrypts Π1. Thus, we have Pr

[
Exp

FHEd,LHEb,n,ε
λ,B = 1

]
≥

Pr
[
b←R {0, 1}, (pp, Π̃b)← Hb.5λ : A(pp, Π̃b) = b

]
. Overall, we have shown that:

{H0.1
λ }λ∈N ≈s {H0.2

λ }λ∈N ≈s {H0.3
λ }λ∈N ≈s {H0.4

λ }λ∈N ≈s {H0.5
λ }λ∈N ≈c

{H1.5
λ }λ∈N ≈s {H1.4

λ }λ∈N ≈s {H1.3
λ }λ∈N ≈s {H1.2

λ }λ∈N ≈s {H1.1
λ }λ∈N.

46

5.4 XiO from 1-circular Security of GSW

We finally show how to base security on just the LWE assumption and the 1CIRCOSRL-assumption
w.r.t. GSW— i.e. the assumption that SRL security of GSW is preserved in the presence of an
encryption of the GSW secret key.

We do this in two steps. First, we remark that in our XiO construction, security still holds
if both the FHE and LHE use the same secret key (as long as the 2-circularly security of the two
schemes holds in this setting). To that end, we describe a variant of the GSW FHE, denoted by
GSW′ (Section 5.4.2), where the secret key is given as part of the CRS (instead of being sampled by
the key generation algorithm).

Next, we present a slight modification of Packed-Regev, called Packed-Regev’, where the secret
key s is just a vector like in GSW and we then expand it into a Packed-Regev secret key (which is
a matrix) by tensoring with the identify matrix. Moreover, the public key of Packed-Regev′ LHE
uses an LWE noise of larger magnitude than Packed-Regev LHE. This way, the LHE public key can
be generated from a GSW public key (recall the random self reducibility of LWE increases the noise
magnitude). Taking larger noises only strengthens security of the scheme. The magnitude is taken
to be negligible to all other smudging-size noises used by the scheme, so all properties that require
smudging the noise used in the public key are still satisfied. That is, Packed-Regev’ is a proper
hintable LHE as per Definition 4.1. Its description is provided in Section 5.4.1.

We finally remark that, as is well known for the Regev scheme, 1-circular security directly holds
also for Packed-Regev′. Thus, 2-circular SRL security of GSW and Packed-Regev’ is implied by just
1-circular security of GSW. This is proven in Section 5.4.3.

5.4.1 Packed-Regev′

We now introduce Packed-Regev′ which is identical to Packed-Regev except for the distribution of
the secret key, the dimensions of the public matrix A, and the magnitude of the LWE noises used.
Namely, the secret key is now a vector of the form s← χκ, and it is used to generate a matrix S of

the form S = s>⊗Id`2 =

s> 0 · · ·
0 s>

...
. . .

 ∈ Z`2×`2κN . The matrix A ∈ Z`2w×mN (instead of dimensions

κ ×m in Packed-Regev). Finally, the LWE noise E is sampled as E ←R [−2λ/3, 2λ/3]`2×m, instead
of the polynomially-bounded distribution χ`2×m. This will be useful to generate the LHE public
key from a GSW public key (which is needed to reduce 1-circular security of GSW to correlated-key
2-circular security).

Note that this is still an LHE since: none of the properties relied on the distribution of S; the
properties that relied on smudging the noise E are still satisfied, since the magnitude of E — 2λ/3 — is
still negligible compared to other smudging size noises (of magnitude 2λ/2 and 2λ for normal and noisy
encryptions, respectively). It also satisfies semantic security, because even though S is sparse, the

public key SA+E still contains of a bunch of LWE samples, of the form SA+E =

 s>A1 + e>1
...

s>A`2 + e>`2

,

where A =

A1
...

A`2

, Ai ∈ Zκ×mN and e>i ∈ Z1×m
N is the the i’th row of E for all i ∈ [`2]. Thus, the

public key can be turned to uniformly random using the LWE assumption (the fact that the noises
ei are now of larger magnitude can only make the LWE assumption weaker), and the same security
proof that for Packed-Regev applies.

47

We now describe the Packed-Regev′ LHE in more details (the difference with the Packed-Regev
LHE from Section 4.2 are highlighted in red). As for Packed-Regev, this scheme is parameterized by
polynomials `1 and `2; we denote it by P-Regev′`1,`2 .

• Gen(crs):

Given as input crs = 1λ, it chooses the parameters N,χ, κ exactly as described in Section 4.2. It
sets m = 2`2κ log(N) + 2λ (recall that in Packed-Regev, we have m = 2κ log(N) + 2λ). It computes
(A, TA)← TrapGen(1λ, N, `2κ) (recall that in Packed-Regev, the dimension of A is κ×m),

s←R χ
κ,S = s> ⊗ Id`2 =

s> 0 · · ·
0 s>

...
. . .

 ∈ Z`2×κ`2N ,

E← [−2λ/3, 2λ/3]`2×m, and sets pk = (N,χ,A,SA + E), sk = s, td = TA. It outputs (pk, sk, td).

The PPT algorithms CRSgen, Enc, Enc?, Eval, Dec, SecHint, PubHint, Rec, VerKey are exactly the
same as described in Section 4.2.

5.4.2 GSW′

We describe an FHE scheme which is exactly the GSW FHE described in Section 3.2.2, except the
Gen algorithm, given as input a crs, checks that the crs contains an LWE secret s, and uses it as its
secret key (if crs doesn’t contain such a vector, the algorithm aborts). The public key is computed
from s as in the original GSW FHE. This minor change will allow us to consider an LHE scheme
(namely, Packed-Regev′ described above) using the same secret key as the GSW′ encryption scheme.
This scheme, as for the original GSW, is parameterized by a polynomial δ, and is denoted by GSW′

δ.

• Gen(crs):
Given as input crs which contains a modulus N and vector s ∈ Zκ and the description of a distribu-
tion χ over Z from a Bχ-bounded ensemble for a polynomial Bχ, it sets g = (1, 2, . . . , 2dlog(N)e−1) ∈
Zdlog(N)e
N , w = (κ+ 1)dlog(N)e and sk = (−s, 1)⊗ g ∈ ZwN . The rest of the parameters is generated

as in the original GSW presented in Section 3.2.2. Namely, it sets m = 2(κ + 1)dlog(N)e + 2λ,
B? = 2λ(w + 1)δdlog(N)e and B = Bχ(w + 1)δdlog(N)em. It samples A ←R Zκ×mN , e ← χm,

G = g> ⊗ Idκ+1 ∈ Z(κ+1)×w
N , U =

(
A

s>A + e>

)
∈ Z(κ+1)×m

N and sets pk = (B,U,G). It outputs

(pk, sk).

The algorithms Enc, Enc?, Eval, Dec, Eval′, Evalrand, ReRand are defined exactly as for the GSWδ

scheme, given in Section 3.2.2 and in Section 5.1.

5.4.3 2-circular SRL Security from 1-circular SRL Security

Theorem 5.4. Assume that for all polynomials δ, GSWδ is (subexponentially) 1-circular SRL secure.
Then for all polynomials δ, `1, `2, GSW′

δ and P-Regev′`1,`2 are (subexponentially) 2-circular SRL
secure.

Proof: The proof proceeds using the hybrid experiments listed below, defined for all λ ∈ N.

• H0
λ: this is the experiment from Definition 5.2. For completeness, we describe it here. We write

48

GSW′
δ = (Gen,Enc,Enc?,Eval,Eval′,Evalrand,ReRand), and P-Regev′`1,`2 = (Gen,Enc,Enc

?
,Eval,SecHint,

PubHint,Rec,Dec,VerKey). The experiment H0
λ generates the following:

� (pk, sk) ← Gen(pk, sk), where sk = (−s, 1) ⊗ g ∈ ZwN with w = (κ + 1)dlog(N)e and pk =

(B,U,G) with U =

(
A

s>A + e>

)
∈ Z(κ+1)×m

N .

� (pk, sk) ← Gen(1λ), where pk =
(
N,χ,A ∈ Zκ`2×mN ,

(
s> ⊗ Id`2

)
A + E ∈ Z`2×mN

)
with m =

2κ`2dlog(N)e+ 2λ, and sk = s ∈ Zκ.

It sends the pair (pk, pk) to the adversary, which returns a pair of messages (m0,m1). The experiment

then samples b ← {0, 1}, r ←R

(
[−1, 1]m×w

)κ+|mb|
, computes ct = Encpk(sk‖mb; r), ct ← Encpk(sk)

and sends (pk, pk, ct, ct) to the adversary, which also has an access to OSRL(mb, r). The adversary
sins if it guesses b successfully and never makes the oracle OSRL(mb, r) output ⊥.

• H1
λ: this experiment is the same as H0

λ, except the challenge ciphertext ct is computed as follows:

ct =
(
AR,

((
s> ⊗ Id`2

)
AR + E′+ sk>⊗ Id`2

)
instead of ct =

(
AR,

(((
s> ⊗ Id`2

)
A+E

)
R + E′+

sk> ⊗ Id`2

)
in H0

λ (the difference is highlighted in red). We show that

{H0
λ}λ∈N ≈s {H1

λ}λ∈N.

By Lemma 2.2 (smudging), for all R ∈ [−1, 1]m×κ`2 and all E ∈ [−2λ/3, 2λ/3]`2×m, the follow-
ing distributions have statistical distance 2−Ω(λ): {E′ ←R [−2λ/2, 2λ/2]`2×w`2 : E′ + ER} and
{E′ ←R [−2λ/2, 2λ/2]`2×w`2 : E′}. The first distribution (with pre and post-processing) corresponds
to the experiment H0

λ, whereas the second distribution (with the same pre and post-processing)
corresponds to H1

λ.

• H2
λ: this experiment is the same as H1

λ, except the challenge ciphertext ct uses U ←R Zκ`2×w`2N ,

instead of AR with A←R Zκ`2×mN and R←R [−1, 1]m×w`2 . We prove that:

{H1
λ}λ∈N ≈s {H2

λ}λ∈N.

To do so, we use Lemma 2.1 (leftover hash lemma), which states that the following distributions
have statistical distance 2−Ω(λ): {A ←R Zκ`2×mN ,R ←R [−1, 1]m×w`2 : (A,AR)} and {A ←R

Z`2w×mN ,U←R Zκ`2×w`2N : (A,U)}. The first distribution corresponds (with pre and post-processing)
to the experiment H1

λ, whereas the second distribution (with the same pre and post-processing)
corresponds to H2

λ.

• H3
λ: this experiment is the same as H2

λ, except the challenge ciphertext ct uses U−g>⊗Idκ`2 where

U ←R Zκ`2×w`2N and Idκ`2 ∈ Zκ`2×κ`2N denotes the identity matrix, instead of U. The two experi-

ments H2
λ and H3

λ are the same, since the following are identically distributed: {U←R Zκ`2×w`2N : U}
and {U ←R Zκ`2×w`2N : U − g> ⊗ Idκ`2}. Note that in hybrid H3

λ, the ciphertext ct is of the form:

ct =
(
U − Idκ`2 ,

(
s> ⊗ Id`2

)
U + E′

)
. To see this, note that s> ⊗ Id`2 =

s>

. . .

s>

 ∈ Zκ`2N ,

g> ⊗ Idκ`2 =

g>

. . .

g>

, and
(
s> ⊗ Id`2

)
·
(
g> ⊗ Idκ`2

)
=

(s⊗ g)>

. . .

(s⊗ g)>

 =

49

(s⊗ g)> ⊗ Id`2 .

• H4
λ: this experiment is the same as H3

λ, except the matrix U is computed as follows: U =

U1
...

U`2


where for all i ∈ [`2], Ui = ARi with Ri ←R [−1, 1]m×`2 . We prove that:

{H3
λ}λ∈N ≈s {H4

λ}λ∈N.

To do so, we use the leftover hash lemma (Lemma 2.1) that states the following distributions have
statistical distance 2−Ω(λ): {A ←R Zκ×mN ,∀i ∈ [`2],Ri ←R [−1, 1]m×w`2 :

(
A, (ARi)i∈[`2]

)
} and

{A ←R Zκ×mN ,∀i ∈ [`2],Ui ←R Zκ×κ`2N :
(
A, (U)i∈[`2]

)
}. The first distribution (with pre and post-

processing) corresponds to the experiment H4
λ, whereas the second distribution (with the same pre

and post-processing) corresponds to H3
λ.

Note that in H4
λ, the ciphertext ct is of the form: ct =

(
U− g> ⊗ Idκ`2 ,

 s>AR1
...

s>AR`2

+ E′
)

.

• H5
λ: this experiment is the same as H4

λ, except the challenge ciphertext ct is as follows (the differ-

ences with previous hybrid highlighted in red): ct =
(
U−g>⊗ Idκ`2 ,

 (s>A + e>)R1
...

(s>A + e>)R`2

+ E′
)

. We

show that
{H4

λ}λ∈N ≈s {H5
λ}λ∈N,

with statistical distance 2−Ω(λ). For all e ∈ ZmN such that ‖e‖∞ ≤ Bχ for a polynomial Bχ and
all Ri ∈ [−1, 1]m×w`2 , by Lemma 2.2, the following distributions have statistical distance 2−Ω(λ):

{E′ ←R [−2λ/2, 2λ/2]`2×κ`2 : E′} and {E′ ←R [−2λ/2, 2λ/2]`2×κ`2 : E′ +

e>R1
...

e>R`2

}. The first dis-

tribution (with pre and post-processing) corresponds to the experiment H4
λ, whereas the second

distribution (with the same pre and post-processing) corresponds to H5
λ.

• H6
λ: this experiments is the same as H5

λ, except pk is computed as follows: for all i ∈ [`2],

Ri ←R [−1, 1]m×m, A =

AR1
...

AR`2

 ∈ Zκ`2×mN . By the leftover hash lemma (Lemma 2.1) with pre

and post-processing, we have:
{H5

λ}λ∈N ≈s {H6
λ}λ∈N.

Note that in hybrid H6
λ, the public key pk is of the form: pk =

(
A,

 s>AR1
...

s>AR`2

+ E
)

.

• H7
λ: this experiment is the same as H6

λ, except pk is of the form (the differences with previous

50

hybrid highlighted in red): pk =
(
A,

 (s>A + e>)R1
...

(s>A + e>)R`2

+ E
)

. We prove that:

{H6
λ}λ∈N ≈s {H7

λ}λ∈N,

with statistical distance 2−Ω(λ). To do so, we use the fact that for all e ∈ ZmN such that ‖e‖∞ ≤ Bχ
for a polynomial Bχ, ll Ri ∈ [−1, 1]m×κ`2 , by Lemma 2.2 (smudging), the following distribution
have statistical distance 2−Ω(λ): {E ←R [−2λ/3, 2λ/3]`2×m : E} and {E ←R [−2λ/3, 2λ/3]`2×m :

E+

e>R1
...

e>R`2

}. The first distributions (with pre and post-processing) corresponds to the experiment

H6
λ, whereas the second distribution (with the same pre and post-processing) corresponds to H7

λ.
Finally, we prove that for all nuPPT adversariesA playing against the experimentH7

λ, there exists
an efficient reduction B that can break the 1-circular SRL security of GSWδ with an advantage as
large as the advantage of A. That is,

Given as input the pk = (B,A, s>A+e>,G) from its experiment, the reduction B samples Ri ←R

[−1, 1]m×m for all i ∈ [`2], it E←R [−2λ/3, 2λ/3]`2×m, A =

AR1
...

AR`2

, pk =
(
A,

 (s>A + e>)R1
...

(s>A + e>)R`2

+

E
)

, where again (s>A + e>) is taken from pk. It sends (pk, pk) to A, which answers with a pair

of messages (m0,m1). The reductions B forwards the pair (m0,m1) to its experiment, upon which
it receives the ciphertext ct = Encpk(s‖mb) from its experiment. Then, for all i ∈ [`2], it samples

Ri ←R [−1, 1]m×κ`2 , E′ ←R [−2λ/2, 2λ/2]`2×κ`2 , ct =
(AR1

...
AR`2

 − Idκ`2 ,

 (s>A + e>)R1
...

(s>A + e>)R`2

 + E′
)

,

where (s>A + e>) is taken from pk. It sends (ct, ct) to A. Whenever A makes a query to its SRL
oracle, B forwards the query to its own SRL oracle and sends back the answer to A.

5.5 Concluding Our Main Theorem

Combining Theorem 3.5 (SRL security of GSW from LWE), with Theorem 5.4 (1-circular SRL
security of GSW⇒ 2-circular SRL security of GSW’ and Packed-Regev’) and Theorem 5.3 (2-circular
SRL security of GSW’ and Packed-Regev’ ⇒ XiO) we obtain the following theorem.

Theorem 5.5. Assume the (subexponential) LWE assumption holds. Assume further that for all
polynomial δ, 1CIRCOSRL holds w.r.t GSWδ. Then (subexponentially-secure) XiO for Plog/poly exists.

Finally, combining with Theorem 2.4 (subexponential XiO and LWE ⇒ iO), we obtain our main
theorem.

Theorem 5.6. Assume the subexponential LWE assumption holds. Assume further that that for all
polynomial δ, 1CIRCOSRL holds w.r.t GSWδ. Then subexponentially-secure iO for P/poly exists.

Acknowledgments

We wish to thank Hoeteck Wee and Daniel Wichs for their insightful feedback on a previous eprint
version of this paper. In particular, they encouraged us to present a game-based definition of SRL
security (as opposed to the indistinguishability based definition we presented in our earlier draft),
and to clarify differences between circular SRL-security and “plain” circular security.

51

References

[ABBC10] T. Acar, M. Belenkiy, M. Bellare, and D. Cash. Cryptographic agility and its relation
to circular encryption. In EUROCRYPT 2010, LNCS 6110, pages 403–422. Springer,
Heidelberg, May / June 2010.

[ACPS09] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. In CRYPTO 2009, LNCS
5677, pages 595–618. Springer, Heidelberg, August 2009.

[Agr19] S. Agrawal. Indistinguishability obfuscation without multilinear maps: New methods
for bootstrapping and instantiation. In EUROCRYPT 2019, Part I, LNCS 11476, pages
191–225. Springer, Heidelberg, May 2019.

[AJ15] P. Ananth and A. Jain. Indistinguishability obfuscation from compact functional en-
cryption. In CRYPTO 2015, Part I, LNCS 9215, pages 308–326. Springer, Heidelberg,
August 2015.

[AJKS18] P. Ananth, A. Jain, D. Khurana, and A. Sahai. Indistinguishability obfuscation without
multilinear maps: iO from LWE, bilinear maps, and weak pseudorandomness. Cryp-
tology ePrint Archive, Report 2018/615, 2018. https://eprint.iacr.org/2018/615.

[AJL+12] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Mul-
tiparty computation with low communication, computation and interaction via thresh-
old FHE. In EUROCRYPT 2012, LNCS 7237, pages 483–501. Springer, Heidelberg,
April 2012.

[AJL+19] P. Ananth, A. Jain, H. Lin, C. Matt, and A. Sahai. Indistinguishability obfuscation
without multilinear maps: New paradigms via low degree weak pseudorandomness and
security amplification. Cryptology ePrint Archive, Report 2019/643, 2019. https:

//eprint.iacr.org/2019/643.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th
ACM STOC, pages 99–108. ACM Press, May 1996.

[AP09] J. Alwen and C. Peikert. Generating Shorter Bases for Hard Random Lattices. In 26th
International Symposium on Theoretical Aspects of Computer Science STACS 2009,
Proceedings of the 26th Annual Symposium on the Theoretical Aspects of Computer
Science, pages 75–86, Freiburg, Germany, February 2009. IBFI Schloss Dagstuhl.

[AP20] S. Agrawal and A. Pellet-Mary. Indistinguishability obfuscation without maps: Attacks
and fixes for noisy linear FE. In EUROCRYPT 2020, Part I, LNCS, pages 110–140.
Springer, Heidelberg, May 2020.

[BCP14] E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In TCC, pages
52–73, 2014.

[BDGM19] Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta. Leveraging linear decryption:
Rate-1 fully-homomorphic encryption and time-lock puzzles. In TCC 2019, Part II,
LNCS, pages 407–437. Springer, Heidelberg, March 2019.

[BDGM20a] Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta. Candidate iO from homomorphic
encryption schemes. In EUROCRYPT 2020, Part I, LNCS, pages 79–109. Springer,
Heidelberg, May 2020.

52

[BDGM20b] Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta. Factoring and pairings are
not necessary for io: Circular-secure lwe suffices. Cryptology ePrint Archive, Report
2020/1024, 2020. https://eprint.iacr.org/2020/1024.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. In CRYPTO 2001, LNCS 2139, pages
1–18. Springer, Heidelberg, August 2001.

[BGL+15] N. Bitansky, S. Garg, H. Lin, R. Pass, and S. Telang. Succinct randomized encodings
and their applications. IACR Cryptology ePrint Archive, 2015:356, 2015.

[BHW15] A. Bishop, S. Hohenberger, and B. Waters. New circular security counterexamples from
decision linear and learning with errors. In ASIACRYPT 2015, Part II, LNCS 9453,
pages 776–800. Springer, Heidelberg, November / December 2015.

[BIJ+20] J. Bartusek, Y. Ishai, A. Jain, F. Ma, A. Sahai, and M. Zhandry. Affine determinant
programs: A framework for obfuscation and witness encryption. In ITCS 2020, pages
82:1–82:39. LIPIcs, January 2020.

[BP15] N. Bitansky and O. Paneth. ZAPs and non-interactive witness indistinguishability from
indistinguishability obfuscation. In TCC 2015, Part II, LNCS 9015, pages 401–427.
Springer, Heidelberg, March 2015.

[BPR15] N. Bitansky, O. Paneth, and A. Rosen. On the cryptographic hardness of finding a Nash
equilibrium. In 56th FOCS, pages 1480–1498. IEEE Computer Society Press, October
2015.

[BPW16] N. Bitansky, O. Paneth, and D. Wichs. Perfect structure on the edge of chaos - trapdoor
permutations from indistinguishability obfuscation. In TCC 2016-A, Part I, LNCS
9562, pages 474–502. Springer, Heidelberg, January 2016.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, pages 62–73. ACM Press, November 1993.

[BRS02] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence
of key-dependent messages. Cryptology ePrint Archive, Report 2002/100, 2002. http:
//eprint.iacr.org/2002/100.

[BV15] N. Bitansky and V. Vaikuntanathan. Indistinguishability obfuscation from functional
encryption. In 56th FOCS, pages 171–190. IEEE Computer Society Press, October
2015.

[BZ14] D. Boneh and M. Zhandry. Multiparty key exchange, efficient traitor tracing, and more
from indistinguishability obfuscation. In Advances in Cryptology - CRYPTO 2014 -
34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I, pages 480–499, 2014.

[CGH98] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited
(preliminary version). In 30th ACM STOC, pages 209–218. ACM Press, May 1998.

[CGH12] D. Cash, M. Green, and S. Hohenberger. New definitions and separations for circular
security. In PKC 2012, LNCS 7293, pages 540–557. Springer, Heidelberg, May 2012.

53

[CHJV14] R. Canetti, J. Holmgren, A. Jain, and V. Vaikuntanathan. Indistinguishability ob-
fuscation of iterated circuits and RAM programs. Cryptology ePrint Archive, Report
2014/769, 2014. http://eprint.iacr.org/2014/769.

[CHL+15] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the multilinear
map over the integers. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 3–12, 2015.

[CKP15] R. Canetti, Y. T. Kalai, and O. Paneth. On obfuscation with random oracles. In The-
ory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw,
Poland, March 23-25, 2015, Proceedings, Part II, pages 456–467, 2015.

[CL01] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In EUROCRYPT 2001, LNCS 2045,
pages 93–118. Springer, Heidelberg, May 2001.

[CLP15] K.-M. Chung, H. Lin, and R. Pass. Constant-round concurrent zero-knowledge from
indistinguishability obfuscation. In CRYPTO 2015, Part I, LNCS 9215, pages 287–307.
Springer, Heidelberg, August 2015.

[CLT13] J.-S. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the integers.
In CRYPTO 2013, Part I, LNCS 8042, pages 476–493. Springer, Heidelberg, August
2013.

[CLT15] J.-S. Coron, T. Lepoint, and M. Tibouchi. New multilinear maps over the integers. In
CRYPTO 2015, Part I, LNCS 9215, pages 267–286. Springer, Heidelberg, August 2015.

[DJ01] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In PKC 2001, LNCS 1992, pages 119–136.
Springer, Heidelberg, February 2001.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In 41st ACM STOC,
pages 169–178. ACM Press, May / June 2009.

[GGH13a] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In
EUROCRYPT 2013, LNCS 7881, pages 1–17. Springer, Heidelberg, May 2013.

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS,
pages 40–49. IEEE Computer Society Press, October 2013.

[GGH15] C. Gentry, S. Gorbunov, and S. Halevi. Graph-induced multilinear maps from lattices.
In TCC 2015, Part II, LNCS 9015, pages 498–527. Springer, Heidelberg, March 2015.

[GGHR14] S. Garg, C. Gentry, S. Halevi, and M. Raykova. Two-round secure MPC from indis-
tinguishability obfuscation. In Theory of Cryptography - 11th Theory of Cryptography
Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, pages
74–94, 2014.

[GH10] M. Green and S. Hohenberger. Cpa and cca-secure encryption systems that are not
2-circular secure, 2010. matthewdgreen@gmail.com 14686 received 16 Mar 2010, last
revised 18 Mar 2010.

54

[GJK18] C. Gentry, C. S. Jutla, and D. Kane. Obfuscation using tensor products. In Electronic
Colloquium on Computational Complexity (ECCC), page 149, 2018.

[GJLS20] R. Gay, A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from simple-to-
state hard problems: New assumptions, new techniques, and simplification. Technical
report, Cryptology ePrint Archive, Report 2020/764, 2020. https://eprint.iacr.

org/2020/764, 2020.

[GK05] S. Goldwasser and Y. T. Kalai. On the impossibility of obfuscation with auxiliary input.
In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005),
23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages 553–562, 2005.

[GKW17] R. Goyal, V. Koppula, and B. Waters. Separating semantic and circular security for
symmetric-key bit encryption from the learning with errors assumption. In EURO-
CRYPT 2017, Part II, LNCS 10211, pages 528–557. Springer, Heidelberg, April / May
2017.

[GLSW14] C. Gentry, A. Lewko, A. Sahai, and B. Waters. Indistinguishability obfuscation from
the multilinear subgroup elimination assumption. Cryptology ePrint Archive, Report
2014/309, 2014.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–
299, 1984.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In 40th ACM STOC, pages 197–206. ACM Press, May
2008.

[GSW13] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO 2013,
Part I, LNCS 8042, pages 75–92. Springer, Heidelberg, August 2013.

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way
functions (extended abstracts). In 21st ACM STOC, pages 12–24. ACM Press, May
1989.

[JLMS19] A. Jain, H. Lin, C. Matt, and A. Sahai. How to leverage hardness of constant-degree
expanding polynomials overa R to build iO. In EUROCRYPT 2019, Part I, LNCS
11476, pages 251–281. Springer, Heidelberg, May 2019.

[JLS20] A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from well-founded as-
sumptions. Cryptology ePrint Archive, Report 2020/1003, 2020. https://eprint.

iacr.org/2020/1003.

[JS18] A. Jain and A. Sahai. How to leverage hardness of constant-degree expanding poly-
nomials over R to build iO. Cryptology ePrint Archive, Report 2018/973, 2018.
https://eprint.iacr.org/2018/973.

[KLW15] V. Koppula, A. B. Lewko, and B. Waters. Indistinguishability obfuscation for turing
machines with unbounded memory. In 47th ACM STOC, pages 419–428. ACM Press,
June 2015.

55

[KMN+14] I. Komargodski, T. Moran, M. Naor, R. Pass, A. Rosen, and E. Yogev. One-way
functions and (im)perfect obfuscation. In 55th FOCS, pages 374–383. IEEE Computer
Society Press, October 2014.

[KNY14] I. Komargodski, M. Naor, and E. Yogev. Secret-sharing for NP. In ASIACRYPT 2014,
Part II, LNCS 8874, pages 254–273. Springer, Heidelberg, December 2014.

[KRW15] V. Koppula, K. Ramchen, and B. Waters. Separations in circular security for arbi-
trary length key cycles. In TCC 2015, Part II, LNCS 9015, pages 378–400. Springer,
Heidelberg, March 2015.

[KW16] V. Koppula and B. Waters. Circular security separations for arbitrary length cycles from
LWE. In CRYPTO 2016, Part II, LNCS 9815, pages 681–700. Springer, Heidelberg,
August 2016.

[Lin16] H. Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes.
In EUROCRYPT 2016, Part I, LNCS 9665, pages 28–57. Springer, Heidelberg, May
2016.

[Lin17] H. Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5
PRGs. In CRYPTO 2017, Part I, LNCS 10401, pages 599–629. Springer, Heidelberg,
August 2017.

[LPST16] H. Lin, R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation with non-trivial
efficiency. In PKC 2016, Part II, LNCS 9615, pages 447–462. Springer, Heidelberg,
March 2016.

[LT17] H. Lin and S. Tessaro. Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In CRYPTO 2017, Part I, LNCS 10401, pages 630–660. Springer,
Heidelberg, August 2017.

[LV16] H. Lin and V. Vaikuntanathan. Indistinguishability obfuscation from DDH-like as-
sumptions on constant-degree graded encodings. In 57th FOCS, pages 11–20. IEEE
Computer Society Press, October 2016.

[MF15] B. Minaud and P.-A. Fouque. Cryptanalysis of the new multilinear map over the
integers. Cryptology ePrint Archive, Report 2015/941, 2015. http://eprint.iacr.

org/.

[Mic01] D. Micciancio. Improving lattice based cryptosystems using the hermite normal form.
In Cryptography and Lattices Conference — CaLC 2001, Lecture Notes in Computer
Science 2146, pages 126–145, Providence, Rhode Island, 29–30March 2001. Springer-
Verlag.

[Mic19] D. Micciancio. From linear functions to fully homomorphic encryption.
https://bacrypto.github.io/presentations/2018.11.30-micciancio-fhe.pdf. Technical re-
port, 2019.

[MMN15] M. Mahmoody, A. Mohammed, and S. Nematihaji. More on impossibility of virtual
black-box obfuscation in idealized models. IACR Cryptology ePrint Archive, 2015:632,
2015.

56

[MO14] A. Marcedone and C. Orlandi. Obfuscation⇒ (IND-CPA security 6⇒ circular security).
In SCN 14, LNCS 8642, pages 77–90. Springer, Heidelberg, September 2014.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In EUROCRYPT 2012, LNCS 7237, pages 700–718. Springer, Heidelberg, April 2012.

[MRH04] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In TCC 2004, LNCS
2951, pages 21–39. Springer, Heidelberg, February 2004.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT’99, LNCS 1592, pages 223–238. Springer, Heidelberg, May 1999.

[PRS17] C. Peikert, O. Regev, and N. Stephens-Davidowitz. Pseudorandomness of ring-LWE for
any ring and modulus. In 49th ACM STOC, pages 461–473. ACM Press, June 2017.

[Ps16] R. Pass and a. shelat. Impossibility of VBB obfuscation with ideal constant-degree
graded encodings. In TCC 2016-A, Part I, LNCS 9562, pages 3–17. Springer, Heidel-
berg, January 2016.

[PST14] R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation from semantically-
secure multilinear encodings. In CRYPTO 2014, Part I, LNCS 8616, pages 500–517.
Springer, Heidelberg, August 2014.

[PVW08] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and com-
posable oblivious transfer. In CRYPTO 2008, LNCS 5157, pages 554–571. Springer,
Heidelberg, August 2008.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In
37th ACM STOC, pages 84–93. ACM Press, May 2005.

[Rot13] R. Rothblum. On the circular security of bit-encryption. In TCC 2013, LNCS 7785,
pages 579–598. Springer, Heidelberg, March 2013.

[SW14] A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable en-
cryption, and more. In 46th ACM STOC, pages 475–484. ACM Press, May / June
2014.

[WW20] H. Wee and D. Wichs. Candidate obfuscation via oblivious lwe sampling. Cryptology
ePrint Archive, Report 2020/1042, 2020. https://eprint.iacr.org/2020/1042.

[WZ17] D. Wichs and G. Zirdelis. Obfuscating compute-and-compare programs under LWE.
In 58th FOCS, pages 600–611. IEEE Computer Society Press, October 2017.

A XiO from the 2-circular SRL Security of the GSW FHE and the
DJ LHE

A.1 Hintable LHE from DCR

We consider the Damg̊ard Jurik (DJ) Linearly Homomorphic Encryption scheme from [DJ01], which
generalizes Paillier’s encryption scheme [Pai99] to larger message spaces, whose security relies on the
Decisional Composite Residuosity (DCR) assumption. This scheme is not needed for our main result,

57

but serves as a good warm-up for understanding the notion of a hintable packed LHE (and leads to
our simplest construction of an XiO). As mentionned in the introduction, BDGM already showed
that the DJ scheme is a hintable LHE; since our notion of a hintable LHE is somewhat different, for
completeness, we here include the standard proof. We start by recalling the DCR assumption under
which the DJ scheme is proven secure.

Definition A.1 (Decisional Composite Residuosity (DCR) assumption [Pai99]). We say that secu-
rity of the DCR assumption holds if there exists a PPT algorithm RSAsample that on input a security
parameter λ, outputs a pair (N,φ(N)) where N is a 2λ-bits integer, φ denotes Euler’s totient func-
tion; such that gcd(φ(N), N) = 1 and such that for all polynomial ζ(·), the following ensembles are
computationally indistinguishable:

{D0
λ}λ∈N =

{
(N,φ(N))← RSAsample(1λ); r ←R ZM : rN

ζ(λ) ∈ ZNζ(λ)+1

}
λ∈N

{D0
λ}λ∈N =

{
(N,φ(N))← RSAsample(1λ);u←R ZNζ(λ)+1 : u ∈ ZNζ(λ)+1

}
λ∈N

We say the DCR assumption holds if 1-security of the LWE assumption holds, and that the subexpo-
nential DCR assumption holds if there exists ε > 0 such that 2λ

ε
-security of the DCR assumptions

holds.

As explained in [DJ01] in further details, the algorithm RSAsample(1λ) samples two safe primes
p, q of λ bits each, and compute the RSA modulus N = pq.

We will show how the DJ encryption scheme satisfies our notion of a hintable packed LHE
(actually even without any packing):

Theorem A.2. Assume (subexponential) security of the DCR assumption. Then, for every polyno-
mial `1, there exists a (subexponentially) secure (`1, `2, h, α)-hintable packed LHE, where h(λ) = 2λ,
`2(λ) = 1, and α(λ) = 0.

A.1.1 The DJ scheme

Given a polynomial `1(·), we recall the LHE from [DJ01] when operating on plaintext of size `1
(recall that `2 = 1 so there is no packing). That is, the scheme is parameterized by a polynomial `1,
and we call it DJ`1 . For this scheme, the hint is simply the randomness used to encrypt a message,
and noisy and normal encryptions behave in the same way:

• CRSgen(1λ):

It simply outputs crs = 1λ, i.e. there is no proper crs for that scheme.

• Gen(crs):

Given crs = 1λ, it uses the sampling algorithm from Definition A.1, (M,φ(M)) ← RSAsample(1λ),
where M ∈ N is a 2λ-bit modulus, φ denotes Euler’s totient function, and we have gcd(φ(M),M) = 1.
Then it chooses a polynomial ζ(·) such that 2`1(λ)+2λ > N ≥ 2`1(λ), where N = M ζ(λ). For simplicity
of the notations, we write ζ = ζ(λ). It sets pk = (N, ζ), sk = td = φ(M) and outputs (pk, sk, td).
The plaintext space is ZN = ZMζ . The randomness space for Enc is Z∗M , the ciphertext space is
Z∗
Mζ , and the function space is ZN , that is t = N .

• Encpk(x):

Given the public pk, a vector x ∈ ZνN , for all i ∈ [ν], it samples ri ←R Z∗M and compute cti =

rM
ζ

i · (1 +M)xi ∈ Z∗
Mζ+1 . It outputs the ciphertext ct = (ct1, . . . , ctν).

58

• Enc?pk(m):

Given the public pk, a message m ∈ ZN , it samples r ←R Z∗M and outputs the noisy ciphertext

ct? = rM
ζ · (1 +M)m ∈ Z∗

Mζ+1 .

• Eval(pk, ct, ct?,y):
Given as input the public key pk, ciphertext ct ∈ Z∗ν

Mζ+1 , noisy ciphertext ct? ∈ Z∗
Mζ+1 , and a vector

y ∈ [−1, 1]ν , it outputs the evaluated ciphertext ct? ·
∏
i∈[ν] ct

yi
i ∈ Z∗

Mζ+1 , where · denotes the integer
multiplication in Z∗

Mζ+1 .

• SecHint(td, ct?):
Given the secret key td and a noisy ciphertext ct? ∈ Z∗

Mζ+1 , it computes d = ct mod M . Since

gcd(M ζ , φ(M)) = 1, it can compute M−ζ ∈ Z such that M ζ ·M−ζ = 1 mod φ(M). It outputs the

hint dM
−ζ ∈ Z∗M .

• PubHint(pk, r):
Given the public key pk and some randomness r ∈ Z∗M , it outputs the hint ρ = r.

• Rec(pk, ct?, ρ):

Given the public key pk, a noisy ciphertext ct?, and a hint ρ ∈ Z∗M , it computes d = ct·r−Mζ ∈ Z∗
Mζ+1 ,

where ρ−M
ζ

is the inverse of ρM
ζ

in Z∗
Mζ+1 . Then, it applies Paillier’s decryption recursively to ob-

tain x ∈ ZMζ . It outputs x ∈ ZN .

• Decsk(ct?):
Given the secret key sk, a noisy ciphertext ct?, it runs Ext(sk, ct?) to recover the randomness r ∈ Z∗M ,
then outputs Rec(pk, ct?, r).

The proof of Theorem A.2 follows from the propositions and theorem below (which demonstrate
that DJ satisfies the desired properties of a hintable packed LHE, as well as security).

Proposition 14 (Linear Homomorphism). The LHE presented above satisfies Property 4.2.

Proof: For all i ∈ [ν], let cti be a ciphertext in the support of Encpk(xi), that is, of the form

cti = (ri)
Mζ

· (1 +M)xi ∈ Z∗
Mζ+1 , and let ct? be a ciphertext in the support of Enc?pk(x

?), that is, of

the form ct? = rM
ζ ·(1+M)x

? ∈ Z∗
Mζ+1 . For all y ∈ {0, 1}ν , the evaluated ciphertext cty is of the form:(

r
∏
i∈[ν] r

yi
i

)Mζ

·(1+M)x
?+
∑
i∈[ν] xiyi ∈ Z∗

Mζ+1 , which is in the support of Enc?pk(x
?+
∑

i∈[ν] xiyi).

Proposition 15 (0-approximate correctness of secret hints). The LHE presented above satisfies
0-approximate correctness, as defined in Property 4.3.

Proof: Let ct? = rM
ζ · (1 + M)x

? ∈ Z∗
Mζ+1 , where x? ∈ ZMζ is the message and r ∈ Z∗M is the

randomness used to produce the ciphertext. We have ct? mod M = rM
ζ mod φ(M) ∈ Z∗M . Since

gcd(φ(M),M ζ) = 1, there is M−ζ ∈ Z such that M ζ ·M−ζ = 1 mod φ(M). Thus, the algorithm
SecHint(td, ct) outputs r ∈ Z∗M . That is, the hint output by SecHint is the randomness used to
produce ct?.

The algorithm Rec(pk, ct?, r) computes d = ct? · r−Mζ
= (1 + M)x

? ∈ Z∗
Mζ+1 where r−M

ζ
is the

inverse of rM
ζ

in Z∗
Mζ+1 . Then it applies Paillier’s decryption recursively to obtain x? ∈ ZMζ . It

outputs x?.

59

Proposition 16 (Equivalence between public hints and secret hints). The LHE presented above
satisfies Property 4.4.

Proof: As seen in the proof of Proposition 15, the hint recovered by SecHint given the trap-
door td and a ciphertext ct? is the randomness r used by Enc? to produce ct?, which is also what
PubHint(pk, r) outputs.

Proposition 17 (0-approximate correctness). The LHE presented above satisfies 0-approximate
correctness, as defined in Property 4.1.

Proof: This directly follows from the 0-approximate correctness of the secret hints (Property 4.3),
since decryption first computes the hint using the secret key, then recovers the message using the
hint.

Proposition 18 (h-succinctness of hints). The LHE presented above satisfies h(λ) = 2λ-succinctness.

Proof: For all λ ∈ N, for all pairs (pk, sk) in the support of Gen(1λ) that define the message space
ZN , for all x? ∈ ZN , all ciphertext ct? in the support of Enc?pk(x

?), we have: all hints ρ in the support
of SecHint(sk, ct?) are in Z∗M , where M is an RSA modulus of size at most 2λ bits.

Proposition 19 (Weak circuit privacy). The LHE presented above satisfies Property 4.6 (weak
circuit privacy).

Proof: For any message x = (x1, . . . , xν) ∈ ZνN , x? ∈ ZN , y ∈ {0, 1}ν , we aim at proving that
following distributions are identical:

D0 :

{
∀i ∈ [ν], ri ←R Z∗M , cti = rM

ζ

i · (1 +M)xi , r ←R Z∗M , ct? = rM
ζ · (1 +M)x

?

cty = (r
∏
i r
yi
i)M

ζ · (1 +M)x
?+x>y : ((cti)i, ct

?, cty)

}

D1 :

{
∀i ∈ [ν], ri ←R Z∗M , cti = rM

ζ

i · (1 +M)xi , r ←R Z∗M , ct? = (r/
∏
i r
yi
i)

Mζ

· (1 +M)x
?

cty = rM
ζ · (1 +M)x

?+x>y : ((cti)i, ct
?, cty)

}
.

This relies on the fact that for all i ∈ [ν], all ri ∈ Z∗M , all yi ∈ ZMζ , the following distributions are
identical: D′0 = {r ←R Z∗M : ((ri)i, r, r ·

∏
i r
yi
i)} and D′1 = {r ←R Z∗M : ((ri)i, r/ (

∏
i r
yi
i) , r)}. The

distribution D′0 corresponds to D0, whereas D′1 corresponds to D1.

Proposition 20 (Density of the noisy ciphertexts). The LHE presented above satisfies Property 4.7 (den-
sity of the noisy ciphertexts).

Proof: One can sample a uniform random value u ←R ZMζ+1 from dlog(M ζ+1)e random bits.

The random value u ∈ ZMζ+1 can be written u = rM
ζ · (1 + M)x where x ∈ ZMζ and r ∈ Z∗M with

probability 1− φ(N)
N > 1− 3

2λ
over the choice of u←R ZMζ+1 .

Theorem A.3 (Security [DJ01]). Assuming the (subexponential) DCR assumption, the DJ scheme
is (subexponentially) secure.

A.2 Instantiation with DJ LHE

Now we instantiate the modular XiO construction described in Section 5.2 with the DJ LHE presented
in Section A.1 that is parameterized by a polynomial `1; we denote it by DJ`1 . For all polynomials
δ, we denote by GSWδ the GSW FHE scheme for depth δ circuits.

Before stating our theorems, we need to define the analogue of the 1CIRC assumption (given in
2.10) in the context of 2-circular security.

60

Definition A.4 (2CIRC assumption). We say that the (subexponential) 2CIRCO assumption holds
w.r.t PKE and PKE if the following holds: if PKE is (subexponentially) O-leakage resilient secure
and PKE is (subexponentially) secure, then (subexponential) O-leakage resilient 2-circular security
holds w.r.t PKE and PKE.

By combining Theorem A.3 (i.e. security of DJ`1 for all polynomials `1 under DCR) and Theo-
rem 3.5 (i.e. SRL-security of the GSWδ for all polynomials δ under LWE), we get:

Lemma A.1. Assume the (subexponential) DCR and the (subexponential) LWE assumptions hold.
Assume further that for all polynomials δ and `1, the 2CIRCOSRL assumption holds w.r.t. GSWδ

and DJ`1. Then, for all polynomials δ and `1, (subexponential) 2-circular SRL security holds w.r.t.
GSWδ and DJ`1.

By combining Lemma A.1 above with Theorem A.2, which states that for all polynomials `1,
DJ`1 is an (`1, `2, h, α)-hintable packed LHE with `2(λ) = 1, h(λ) = 2λ and α(λ) = 0, together with
Theorem 5.3, we get:

Theorem A.5. Assume the (subexponential) DCR and (subexponential) LWE assumptions hold.
Assume further that for all polynomials δ, `1, the 2CIRCOSRL assumption holds w.r.t. GSWδ and
DJ`1. Then (subexponentially-secure) XiO for Plog/poly exists.

Finally, combining Theorem A.5 with Theorem 2.4 (i.e., iO from XiO and LWE) yields one of
our two main theorem:

Theorem A.6. Assume the subexponential DCR and subexponential LWE assumptions hold. As-
sume further that that for all polynomials δ and `1 the 2CIRCOSRL holds w.r.t. GSWδ and DJ`1. Then
subexponentially-secure iO for P/poly exists.

B Concrete Assumption

In Theorem 5.6, we show that subexponential LWE assumption and the subexponential 1CIRCOSRL

assumption w.r.t. GSWδ for all polynomials δ implies subexponentially-secure iO for P/poly.
As explained in Section 3.2.3, it actually suffices to assume that for all polynomials δ, semantic

security of GSWδ implies the following variant of SRL circular security (that is weaker than that of
definition Definition 3.3) of GSWδ.

Definition B.1 (One-shot SRL circular security). We say that an FHE scheme FHE = (CRSgen,Gen,
Enc,Enc?,Eval′,Evalrand,Dec) that satisfies batch correctness (as per Definition 3.1) and randomness
homomorphism (as per Definition 3.2) is one-shot SRL circular secure if for all stateful nuPPT ad-
versaries A, there exists some negligible function µ(·) such that for all λ ∈ N, Pr[ExpFHEλ,A = 1] ≤
1/2 + µ(λ), where the experiment ExpFHEλ,A is defined as follows:

ExpFHEλ,A =



(m0,m1, q)← A(1λ), crs← CRSgen(1λ)
(pk, sk)← Gen(crs), b← {0, 1}
r←R R|sk‖m

b|, ct = Encpk(sk‖mb; r)
∀i ∈ [q(λ)] : r?i ←R R?, cti = Enc?pk(0; r?i)

(fi, αi)i∈[q(λ)] ← A(pk, ct)
∀i ∈ [q(λ)], rfi = Evalrand(pk, fi, r, sk‖mb), leaki = r?i − rfi
b′ ← A

(
(leaki)i∈[q(λ)]

)
Return 1 if |m0| = |m1|, b′ = b and for all i ∈ [p(λ)], fi(sk‖mb) = αi; 0 otherwise.


61

	Introduction
	Assumptions in More Detail
	Our Ideas in a Nutshell

	Preliminaries
	Definition of Structured-Seed PRG
	Construction of Structured Seed PRG
	Bootstrapping to Indistinguishability Obfuscation
	Perturbation Resilient Generators

	Acknowledgements
	References
	Partially Hiding Functional Encryption
	Recap of constant-depth functional encryption

